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ABSTRACT

A general inecremental variational method for the analysis of geo-
metrically and physically non-linear problems in continuum mechanics is
developed. This variational method is applicable to any type of material
properties., In particular, non-linear constitutive laws for elastic,
and elastic-plastic materials are considered. Starting from the basic
principles in continuum mechanics, such as the invariance requirements
and the thermodynamic laws, general incremental constitutive equations
have been derived for non-linear elastic materials. For the elastic-
plastic materials an incremental constitutive law.is considered where
deformations are infinitesimal but rotations are finite.

The method has been specialized and applied to the analysis of
large deflections of elastic-plastic axisymmetrically deformed shells
of revolution. The displacement formulation of the finite element
method has been exploited for this problem and a digital computer
program is written for the numerical analysis. Several examples of
circular plate, shallow shell, and thin éxisymmetric shells of arbi-
trary meridional form are presented to illustrate the cenvergence and

accuracy of the method.
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NOMENCLATURE

A list of all important symbols in the text is compiled here. The
symbols which are introduced in some sections of the text but which are not
referred to later are not included. Some of the symbols may have two mean-
ings in different sections; these are clearly defined and should not confuse
the reader. For the symbols which have either lengthy definitions or no
particular name the reader is referred to the place in the text where they
were first introduced.

A tensor component with an asterisk (*) superscript denotes a
physical component. Repeated indices indicate summation over the range of
the indices unless otherwise stated. Latin indices range from 1 - 3, and

Greek indices from 1 - 2.

a,a,A surface area in the initial, first and second configuratioms,
respectively

increment of free energy function

lA,2A free energy function of configurations 1 and 2, respectively
a_ ,A in plane base vectors of the middle surface of the shell in
~0, " ~0, . . .
configurations 1 and 2, respectively
a,,A unit vector normal to the middle surface of the shell in con-
~3%<3 £4 : . -
igurations 1 and 2, respectively
auB,aaB covariant and contravariant components of the middle surface
metric tensor in configuration 1
Aijkﬁ as defined in (II.51)
bUB the second invariant form of the middle surface of the shell
) in configuration 1
bg curvature tensor of the middle surface of the shell in con-

figuration 1

xi




c edge of the shell

Green's deformation tensor between configurations 1 and 2

1]
lcij’zcij Green's deformation tensors at configurations 1 and 2, respectively
Cijkl elastic-plastic moduli tensor
', physical components of elastic-plastic moduli tensor, defined in
ijk
(I1.77)
C elastic-plastic moduli tensor for generalized plane stress, see
0ByS
(I11.28)
E Young's modulus
Et tangent modulus
e linear part of the meridional strain of the middle surface of the
shell
e linear part of the circumferential strain of the middle surface of
the shell
i3 linear part of Lagrange strain tensor from configuration 1 to 2
ei,,zei. linear part of the Lagrange strain tensor in configurations 1
J J and 2, respectively
F hardening .function defined in (II.42)
f yield function
fi increment of body force per unit mass
g plastic potential
E;,gi,GA base vectors in the initial, first, and second configurations,

respectively

gij’gij’GAB metric tensors in the initial, first, and second configurationms,

respectively
h thickness of the shell
H hardening function defined in (II.43)
Ej unit base vectors
Jl’JZ’JS invariants of the deviatoric stress tensor
L cord length of an element

xii



increment of the meridional and circumferential bending moments
measured per unit length of the middle surface of the shell in
configuration 1

meridional and circumferential bending moments per unit length
>f the middle surface of the shell in configuration 1

increment of the meridional and circumferential in plane forces
per unit length of the middle surface of the shell in configura-

tion 1

meridional and circumferential in plane forces per unit length
of the middle surface of the shell in configuration 1

direction cosines of the outward normal to the boundary surfaces
in the initial, first and second configuratiomns

meridional and normal force increments measured per unit area of
the middle surface of the shell in configuration 1

increment of shear force per unit area of the middle surface of
the shell in configuration 1

radial coordinate as shown in Figure III.1

rate of heat production per unit mass in configurations 1 and 2,
respectively

meridional and circumferential principal radii of curvature of
the shell in configuration 1

arc length
entropy per unit mass in configurations 1 and 2

increments of Piola symmetric stress tensor measured per unit of
area a and a, respectively

Piola symmetric stress tensor in configuration 2 measured per unit
of area a and a, respectively

increments of surface traction measured per unit of area a and
a, respectively

surface tractions in configuration 1 measured per unit of area a
and &, respectively

surface tractions in configuration 2 measured per unit of area a
and &, respectively

meridional displacement increment of the middle surface of the
shell, see Figure III.2

xiii




w

increment of the displacement vector of a generic point in the
shell space

increments of displacements of the middle surface of the shell,
see Figure IV.1

increments of the displacements in terms of the coordinates of
the initial and first configurations, respectively

displacements between the initial state and the first configura-
tion in terms of the coordinates of configuration 1 and initial
state, respectively

displacements between the initial state and the second configura-
tion in terms of the coordinates of configuration 2 and initial

state, respectively.

volumes of the initial, first, and second configurations,
respectively

normal displacement increment of the middle surface of the shell,
see Figure III.2

plastic work

virtual work

curvilinear coordinates of the initial state, and configurations
1 and 2, respectively

Cartesian coordinates of the initial state, and configurations 1
and 2, respectively

generalized coordinates

angle shown in Figure IV.1l

Christoffel symbols

virtual variation

Kronecker delta

Lagrange strain tensor between configurations 1 and 2
Lagrange strain ténsors at configurations 1 and 2

elastic and plastic parts of Lagrange strain tensor between
configurations 1 and 2

elastic and plastic parts of Lagrange strain tensor in configu-
ration 1

xiv



ess’see

€ ,E
s*0

~d

Pg?PysP

al

ij

physical components of the meridional and- circumferential
Lagrangian strain of the shell between configurations 1

and 2

physical components of the meridional and circumferential
Lagrangian strain of the middle surface of the shell between
configurations 1 and 2

equivalent plastic strain, see (II.41)

ratio of tangent modulus to elastic modulus, also coordinate
along the thickness of the shell

local coordinate for an element as in Chapter IV, see Figure IV.,1

non-linear part of Lagrange strain tensor between configurations
1 and 2

circumferential coordinate of the shell, see Figure IIIL.1l; also
temperature as in Chapter I

hardening parameter

change of the meridional and circumferential curvatures of the
middle surface of the shell between configurations 1 and 2

linear parts of Kgs and Kg» respectively
non-linear parts of Kg» and Kg» respectively

Lamé constant, see (II.1l); also the geometric parameter of
shallow shells, see Chapter III - section III.1,2

as defined in (II.26) and (II.44)

Lamé constant, see (II.1); also the dterminant of space shifter
tensor, see (E.5)

space shifter tensor, see (E.3)

Poisson's ratio

local coordinate for an element, see Figure IV.i
the difference between strains zsij and aij
mass density in the initial state, and configurations 1 and 2,
respectively

equivalent stress

Cauchy stress components in configuration 1




T! deviatoric components of Cauchy stress temsor in configuration 1

¢ meridional angle of the shell

X as defined in (III.5)

ST normal and meridional physical components of the rotation
vector of the middle surface of the shell between configurations
1l and 2

) lw

ij? "ij? 1 2

2 rotation terms in the strain tensors Ei., Eij and Sij’

wij respectively J

Q as defined in (III.31)

{ 1} column vector

> row vector

[ 1] matrix

[A] displacement transformation matrix, see (IV.57)

[B1 as defined in (IV.29)

(C] matrix of elastic-plastic moduli

[D] rigidity matrix, see (III.60)

{e} vector of linear components of strain, see (IV.24)

[F] as defined in (IV.36)

[G] as defined in (IV.48)

[kéo)] incremental stiffness matrix of an element in coordinates o

due to the linear parts of increments of strain, see (IV.30)

[kél)] initial stress stiffness matrix for an element in coordinates
{a}, see (IV.50)

(k] incremental stiffness matrix for an element in coordinates
{a}, see (IV.56)

[kl incremental stiffness matrix of an element in global coordin-
ate system, see (IV.65)

[K] incremental stiffness matrix of the shell, see (IV.66)

{lN},[lN] vector and diagonal matrix of stress resultants in configura-
tion 1 of the shell, see (III.56) and (IV.41)



{p} as defined in (III.52)

{q} increment of equivalent nodal point force
{Qa} incremeﬁt of equivalent nodal point force in generaliéed
coordinates {o}

{r} increment of external nodal loads of the shell

{r} increment of nodal displacements of the shell

[T] transformation matrix, see (IV.60)

{a} generalized coordinates

{e} Lagrange strain betweer. configurations 1, and 2, see (III.59)
{n} non-linear part of Lagrange strain {ec}, see (III.55)
{n} as defined in (IV.36)

(9] as defined in (IV.52)

{x} as defined in (IV.45)
I as defined in (IV.46)
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INTRODUCTION

The consideration of geometrical and/or material nonlinearities
in the analysis of many structures is quite important for various reasons,
e.g., for the precision demanded in. the prediction of the actual behavior
of such structures under severe environmental and loading conditions and
also for economical considerations; As an example, consider thin shells
of revolution. The buckling behavior of these structures is essentially
of nonlinear character and the prediction of their post buckling charac-
teristics without such consideration is not possible. Even under pre-
buckling conditions the analysis of the behavior of some shells of
revolution like a membrane torus or a thin shallow cap inevitably requires
nonlinear analysis. Also, the necessity for utilizing engineering materials
more efficiently and economically in such areas as aerospace industry re-
quires the incorporation of physical and geometrical nonlinearities in the
analysis of shell type structures.

There are no general methods of solution of nonlinear boundary
value problems in engineering. Only a few very simple nonlinear problems
can be solved by exact analytical methods [1,2]. Even the classical approx-
imate solutions such as asymptotic expansions and weighted residual methods
can be applied to relatively simple preblems [1,2,3] and resort must be
made to numerical procedures of analysis. In the past two decades the
advent of high~speed digital computers has renewed the efforts at recon-
sidering an¢ extending some classical approximate methods such as weighted
residual and Ritz method, numerical finite difference techniques, and the
development of new concepts like invariant imbedding and other numerical

procedures.




The finite difference method has been stndied rather well mathe-
matically [145]. The difficulty with the application of this numerical
technique in the problems of continuum mechanics is that it is not suit-
able to express some boundary conditions easily and cannot accommodate
quite irregular changes of geometrical and material properties.

Invariant imbedding is the transformation of the boundary value
problem into an initial value problem by introducing new variables and
parameters [4,146]. This approach, together with the quasilinearization
technique, which is an extension of Newton-Raphsor method for functional
analysis, can be formulated into a predictor corrector formula which may
prove useful in the solution of some nonlinear boundary value problems in
mechanics of solids. The disadvantage of this method is that instead of
one original problem a family of problems must be solved, resulting ir
more computational effort. 1In certain problems the additional calcula-
tions provide some extra informations which are desirable to know.

Another discrete approximation to the boundary value problems
is the finite element method [5,6], which i¢ ar extension of the classi-
cal Ritz method for the solution of wvariational problems. In the finite
element method the domain of the problem is discretized into a number of
disjoint subdomains called elements, a set of points of which (usually on
the boundary) are called nodes. Then the integrand of the functional
integral is approximated by a set of assumed functions which are expressed
in terms of the values of the integrand functions at the nodes by suitable
interpoletion formulas satisfying the continuity conditions at the nodes.

In the problems of continuum mechanics the finite element method
is easily adaptable to matrix formulation which can be readily used for

the analysis by computers. The method is capable of approximating quite



irregular boundary shapes and complicated boundary conditions, and can
handle arbitrary variations of the physical and geometrical parameters in
the domain of the problem.

The above three methods can be used witt an iterative and/or
incremental integration scheme. The choice of either one of these depends,
among other factors, on the physical characteristics of the problem. For
example, for a non-conservative system like a continuum with the incremen-
tal constitutive law of plasticity an incremental procedure should be
adopted. The combination of the finite element method with an incremental
forward integration procedure on some variable of the problem is quite
suitable for the analysis of many problems on digital computers.

The purpose of the present work is to dewvelop an incremental
variational method of analyeis for the protlems in continuum mechanics
considering both the geometrical and physical nonlinearities, and to
apply thé method for the large displacement analysis of elastic~plastic
shells of revolution using the displacement formulation of the finite
element method.

Several forms of the incremental vafiational expressions of the
equilibriur of the continuum are considered in Chapter I and Appendix C.
From among these one expression which is based on a moving reference con-
figuration is chosen and used in subsequent developments. The fact that
such a variational expression leads to correct incremental equations of
equilibriam and boundary conditions is shown in Appendix A, Also, in
this chapter, after a'preiiminary review of the laws of thermodynamics
and invariance principle for energy, the incremental nonlinear constitu-
tive equations of elasticity are derived. For simplicity of understand-
ing of the basic ideas, all of the presentations in Chapters I and II are

in Cartesian coordinates.




In Chapter II the incremental constitutive equations for elastic
materials are simplified for the isotropic case and for infinitesimal
deformations but finite rotations. Based on these kinematic restrictions
and for initially isotropic materials an incremental theory of plasticity
for metals is deduced from the general theory of plasticity by Green and
Naghdi [50]. It is shown that for initially isotropic materials the form
of the elastic-plastic constitutive equations remains invariant in Cartesian
and initially orthogonal convected curvilinear coordinates if the Cartesian
tensors are replaced by the physical components of their corresponding
curvilinear tensors. This invariance is very useful in applying the form~
ulations in Cartesian coordinates to shells of revolution.

Chapters III, IV, and V are on the application of the incremental
method to the large displacement analysis of axisymmetrically deformed
shells of revolution. The kinematic relations for axisymmetric shells of
revolution are derived in Chapter III. Also in this chapter the elastic-
plastic constitutive equations of Chapter II, and the incremental expres-
sion of virtuwal work of Chapter I are specialized for axisymmetric shells
of revolution. Finite element formulation of the variational expression
in Chapter T is given in Chapter IV and the various stiffness matrices
resulting from it are demonstrated. For the finite element analysis of
axisymmetric shells of revolution a curved element developed in [140] is
employed and the displacement formulation of the finite element method
for linear incremental analysis 1s set up. A convenient procedure for the
formation of the initial stress stiffness matrix is demonstrated. Some
numerical examples are giver in Chapter V and the convergence of the

solutions are studied.




CHAPTER I: THEORY OF THE INCREMENTAT METHOD OF ANALYSIS
IN CONTINUUM MECHANICS

I.1 Review of Literature on Incremental Methods of Analysis in
Continuum Mechanics

The incremental method of analysis in continuum mechanics is closely
related to the developments in the theory of the continuum which is
under initial stress. Two approaches have been followed in the formu-
lation of the theory of deformable bodies under initial stress. In the
first approach exact constitutive equations have been sought for the
supefposition of small displacements or displacement gradients upon
arbitrarily large deformations., Tensorial definitions have been used
for strains and corresponding stresses have been defined. The second
approach is more intuitive and relies on approximations within the
kinematics of deformation and the constitutive equations.

According to Truesdell [7] the investigationé in the exact theory
date back to Cauchy who arrived at the correct form of the constitutive
equations of an elastic body under initial stress [8]. A brief historical
account of the developments in the theory of elasticity of deformable
bodies under initial stress is given in [T]. Cauchy's constitutive rela-
tions were derived by Murnaghan [3] by means of Green's theory of elastic
energy . Both Cauchy and Murnaghan's equations are limited to the super-
position of infinitesimal displacement gradients on large initial deform-
ations. A more restrictive theory in which the superposed displacements
themselves are infinitesimal was developed by Green, Rivlin, and Shield

[10].




M1 of these results indicate that the isotropy of an initially isotropic
material is lost even if the displacement gradients of the superposed
displacements are infinitesimal.

Another group >f investigators have adopted the nontensorial strain
quantity based on the definition of extension (the so-called engineering
definition of strain) as a measure of deformation. They separate pure
deformations and rotations and use counstitutive equations which involve
only pure deformations--thus separating the physics of the problem from
the geometry. This approach has been followed by Southwell [11], Biezeno
and Hencky [12], and has been extensively discussed and used by Biot since
1934 [13]. The difficulty with such a strain measure is that it is not
a tensorial entity and cannot be used easily in curvilinear coordinates
unless some approximations are made. Also, in general, it is an irrational
function of displacement gradients unless approximations of the third order
are committed*. The resulting non-linear expression of strain has a
restricted form in which the linear strains are infinitesimal, Even rota-
tions are limited to the first order to make the transformations among
the various stress measures practically useful,**

It can be said that the theories developed by this approach are
limited in scope and generality and usually leave many approximations to
be made by the user, a feature which may prove both helpful and misleading.
A parallel and more restricted development in the theory of elastic sta-
bility was reported by Prager [1l4] who superposes infinitesimal displace-
ments on large ones and performs the superposition of stresses by the
Piola unsymmetric stress tensor. He assumes that the incremental consti-

tutive equations are linear and isotropic.

*
Biot, M.A. [13], pp. 19
*x¥
Biot, M.A. [13], pp. 10, 21.




In an attempt to extend Biot's ideas to the analysis of large
deformations, Felippa [15] wrote an expression for virtual work in
which he uses the Lagrangian strain increment together with the Bie-
zerio-Hencky type of stress. It can be shown that these stresses and
strains are not conjugate in the sense that their product does not
represent work unless the deformations are infinitesimal in which case
Biot's relations are obtained. Therefore, his theory is applicable to
problems in which deformations are infinitesimal but rotations are of
first order.

The increasing interest in the non-linear analysis of structures
has accelerated the application of the incremental method of analysis
to such problems., The use of incremental procedure together with the
finite element technique (with or without iterative procedures) is
gaining momentum in the analysis of nonlinear problems in structural
mechanics. However, so far no rigbrous attempt has been made to give
a general theory for the incremental analysis and in most cases the
lack of understanding of the theory of the continuum under initial
stress is evident. This is partly due to the simplicity of the problems
anglyzed for which relatively good results can be obtained even if crude
approximations are made. The common feature of most of these incremental
procedures is the presence of the so called geometric or the initial
stress stiffness matrix which accounts for the effect of change of the
geometry on equilibrium equations. Since the investigations in this
area are applications to various structural problems and do not present
a unified theory a detailed survey of them will not be presented but

rather the trend of developments will be outlined. More detailed study




of the papers on circular plates and shells of revolution will be given
in Chapter 3.

The use of the geometric stiffness matrix in the linearized incre-
mental method of analysis was first reported by Turner, et al. [16] for
stringers and triangular membrane elements. Gallagher and Padlog [1T]
derived the geometric stiffness matrix for beam columns from the
expression of potential energy. Argyris and his co-workers have
advocated the separation of rigid body motions and deformations of the
elements in the finite element method of analysis and have derived corre-
sponding geometric stiffness matrices for one, two and three dimensional
bodies [18], [19], [20], [21]. An account of the developments in the
incremental approach for nonlinear analysis of structures up to 1965 is
given by Martin [22]. In both [22] and [23] Martin tries to present a
more consistent method of deriving the initial stress stiffness matrix.
Similar attempt was made by Oden [24] who uses the potential energy of
the structural system. The application of the geometric stiffness matrix
for the analysis of linear eigenvalue stability problems for beam columns
is reported by Gallagher and Padlog [17]. The stability analysis for
plane stress problems is considered by Turner, et al. [25], for plate
problems by Hartz [26] and Kapur and Hartz [27], and for shells by Gal-
lagher, et al. [28], [29] and Navaratna [30]. The problems of post
buckling of plates is studied by Murray [31] who uses an iterative
incremental procedure, and of plates and cylindrical shells by Schmit,
Bogner, and Fox [32]. The importance of retaining higher order terms in
the formulation of the incremental method for the analysis of certain
structures was pointed out by Purdy and Przemieniecki [33]. Mallet and

Marcal [34] discuss the methods of formulation of direct and incremental




procedures and arrive at various degrees of non-linearities.

In this chapter a general incremental method of analysis is pre-
sented in which the size of an increment is arbitrary. The incremental
equations of equilibrium are given in the form of the expression of
virtual work which renders itself to direct methods of solution of the
variational problems. In order to make the presentation self-contained,
a summary of the laws of thermodynamics and field equations are given
in section I.2. The treatment follows the work of Truesdell and Noll
[36], Green and Adkins [37], and Green and Rivlin [38]. The incremental
form of the nonlinear constitutive equations for elastic materials is
derived from the laws of thermodynamics. A more restrictive form of the
constitutive equations for the elastic-plastic continuum is given in
chapter 2. The theory is presented in Cartesian coordinates so that the
understanding of the main ideas becomes easy. However, for the sake of
completeness of pfesentation the derivations are also carried out in
curvilinear coordinates in Appendix A. In section I.5 it is demonstra-
ted that the constitutive equations for isotropic elastic-plastic
materials in orthogonal curvilinear coordinates will be the same as
those in Cartesian coordinates if the Cartesian tensors are replaced
by the physical components of the curvilinear tensors. This invari-
ance will be very helpful in the application of the incremental method
for the solution of problems which are formulated in orthogonal curvi-
linear coordinates.

Choice of proper notations becomes a problem in a treatise of
this form which deals with several types of stresses, strains, and
coordinates. Each new variable is defined when it first appears. A

collection of all the notations is appended. Both vectorial and




indicial notations are used. The summation convention holds. Latin

indices range from 1 to 3, and Greek indices indicate 1 and 2.
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1.2 The Field Equations and Thermodynamic Laws

Consider two configurations of a deformable body on its path of
deformation from an initial state characterized by at most an isotropic
state of stress to a final configuration (see Figure I.1). These are
called configurations 1 and 2. The volume, boundary surface and the
coordinates of the material points of the body in the initial, first
and second configurations are denoted by V:E;Ei, vsa,2;, and V,A,%,
respectively. The balance of energy in configuration 1 can be written
as

_’Lf—i l—_j—l— 1—[1_'__
Dt p0(2 VﬁYm +U)dv = po( fmvm *r)av + __( %nvm - h)da (1.1)

v . v a

where %E represents the material derivative holding E; fixed, B;

is the mass density in the initial state, v dis the velocity, lU s
Lf . lr are the internal energy, body force, and rate of heat produc-

~

tion, respectively, per unit mass, L? is the traction in configuration
1 measured per unit of area a , (see Figure 1.2), and h  is the rate
of heat flux per unit of area a .

The invariance requirement of the energy equality (I.1) under
superposed uniform translational and angular velocities leads to the
following equations [38]: +the equations of equilibrium

Cop k), +5 3%

] a

13 BZj (1.2)
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and

1 1
sij = sji s (I.3)
Cauchy's equation
9z
T, = 1sij — (1.4)
oz
J
and heat flux equation
h = q 0y (1.5)

1 . .
where s;; are the components of the Piola symmetric stress tensor,

the dot over Vi denotes material derivative of Vi n is the unit

- . 1- R
normal vector to surface a (see Figure 1.2), and qk is the rate
of heat flux in configuration 1 across a converted coordinate surface

which in the initial state is perpendicular to base vector The

i .
~k
Piola symmetric stress tensor lsij is associated with the deformed

base vectors g (see Figure I1.2). For example, 1smn denotes a force

~

~

acting on configuration 1 parallel to base vector g, and on a surface
which had unit area in the initial state and which was perpendicular to
base vector im. Therefore, this stress acts in configuration 1 but is
measured per unit of area in the initial configuration. Another field
equation denotes the conservation of mass which has already been assumed

in (I.1). Substitution of (1.2), (1.3), (I.4) and (I.5) in (I.1) leads

to the following local energy equality.

1 —1s. 1 1- i—
THe, Ut S B T ek T

Eo 0 (1.6)

1 . . . .
where € is the Lagrange strain tensor in configuration 1.

2k
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The second law of thermodynamics states that

N RN

Dt_pOde—_ po—e-dv+-§d >0 (1.7)
v v a

where lS

is the entropy per unit mass, and © is the temperature.

Substitution of (I.5) into (I.T) results in the following local

expression for the second law of thermodynamics

J—
1 q, 6
— 1o r 1— k™ °k
oS0 " %x "0 20 (1.8)
Helmholtz free energy function lA is defined by
=1y - Lse (1.9)
Substitution of (I.9) into (I.6) and (I.8) gives
-1 — ;1. 1= 1. 1— 1 1. _
P T - po( A+ SO + "88) - Y x + 78,0 g, =0 (1.10)
and
la 6
— /1l 1 1 1. k" °k
-0, (TA + "88) + Sio kg~ T8 >0 | (1.11)
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I.3 The Principle of Virtual Work

A generic point p in the initial state will occupy positions p
and P in configurations 1 and 2, respectively. The displacement vec~
tors between these positions are shown in Figure I.l. The equations of
equilibrium at configurations 1 and 2 car be written in the form of the
expressions of virtual work in different manners depending on the choice
of the reference configuration for the variables involved, and also on
the vectors in terms of which the virtual displacements are expressed.
For example, the variables in configuration 1 can be written with ref-
erence to the coordinates of any configuration desired; also the virtual
displacements for point p can be written as G(lg) or 53 and for
point P can be written as 65 or 6(25). Three incremental expres-
sions of virtual work are considered. The first one in which configu-
ration 1 is taken as the reference and GB as the virtual displacement
is derived in this chapter and used in the subsequent developments.
fhe second expression of virtual work uses the initial configuration as
the reference and 615, 623 as the virtual displacements. For hyper-
elastic materials this formulation can bé recast in the form of the
variation of the incremental internal energy. The third expression of
virtual work uses the initial configuration and 63. These last two

expressions are derived in Appendix C.
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The expression of virtual work W& at configuration 2 is

t-:v=jg-61~1dA+ [pF'SudV (1.12)

where E is the surface traction per unit of area A s p 1is the mass
density in configuration 2, and E is the body force per unit of mass.

Equation (I.12) can be written in terms of the coordinates of con-
figuration 1 by choosing proper definitions for traction and body force.

One such traction is defined by

2 dA
t=T3= (1.13)

where 2t is the traction in configuration 2 and measured per unit of

area in configuration 1, and da is the element of surface area in con-
figuration 1.

The stresses associated with traction 2E can be defined in various
ways, one of which is the symmetric Piola stress tensor. Consider the
neighborhood of & generic point p of the deformable body in configura-
tion 1 and the seme neighborhood in configuration 2. For simplicity of
presentation a two dimensional pictuie of such neighborhood is shown in
Figure I.3, although the theoretical development is carried out for a
three dimensional body. The Cauchy stresses in this neighborhood in
configuraetion 1 are Tij which are associated with the unit base vec-
tors Ek . The Piola symmetric stresses of our interest which act in

the same neighborhood in configuration 2 are called 2sij . These

stresses are associated with the deformed base vectors Gi . FYor example

o~
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2 . . . .
5on denotes a force acting in configuration 2 on a surface which

had a unit area in configuration 1 and was perpendicular to base vector
im ,» and wvhich is parallel to the base vector gn . Therefore, these

stresses are in configuration 2 but are measured per unit area in con-
figuration 1. The relationship: between QE and the stresses 25.. is

1J
of the same form as equation (I.4).

2 2 %y .
kT P15 %, M

(z.1k)

where n is the unit normal vector to surface a .

The magnitude of the components of stress tensor 2si. can be

arbitrarily divided into two parts (see Figure I.h).

2
= + .
S35 Tij * Sy (1.15)

in which Tij have the same magnitude as the corresponding Cauchy
stresses in configuration 1 but are associated with the base vectors

9 , and sij are symmetric stress components which have magnitudes
equal to the difference between the stresses 2sij and Tij . Substi-
tution of equations (I.15), (I.1h4), and (I.13) into the first integral

on the right hand side of equation (I.12) results in

YA
. _ k
Jr T * Sudh = Jr (Tij + sij) Szg-ni Su, da (1.16)
A

a

This surface integral can be replaced by an equivalent volume

integral by means of Gauss transformation. In view of the symmetry of
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s,. and Tij ,» the final result is

ij
T « Su dA = (25 Z._ .),.0u dv +
I i “k,57°1%%
v

A (1.17)

f(‘f.. +s,.,)8e_.dv
iJ 1 Ji
v
in which Eij is the Lagrangian strain from configuration 1 to 2.

€.. =
1J

N

TR TR %Y (2.28)

Considering the law of conservation of mass, the second integral

on the right hand side of equation (I.12) can be written as

] pF * 6u dv = fpo' sz (Suk dv (1.19)

v v

where 2fk denotes the body force per unit mass acting in configuration

2, but measured in terms of the coordinates in configuration 1.

Substitution of (I,17) and (I.19) into (I.12) yields

2 2
W= f (Tij + sij)ée:ij av +j [( S5 zk’j),i *+ 0, fk]<5u.k dv (I.20)
v v

The integrandin the second integral on the right hand side is the

expression for the equilibrium of the body and is equal to zero. There-

fore

W =f('r..+s..)6r-:..dv
v 1J 1J i)
A'2
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or

2 2, . _ (1.21)
f t; Gui da, +ﬁ30 fi Sui dv = f('rij + Sij) Seij av
v

a v

The expression for virtual work at configuration 1 can be written

as
1 1
t, du, da+ [p “f. 6u, dv= |T,, Se.., dv (1.22)
i i o "i i ij ij
a v v
. . 1 . . . . 1 .
in which ti is the traction acting per unit of area of a , fl is

the body force acting per unit of mass in configuration 1, and eij is

the linear part of Lagrangian strain between configurations 1 and 2.

=L,  *u ) (1.23)

e,. .
1) 1,3 Jsl

Subtraction of (I.22) from (I.21) gives
2 1 2 1 _ :
f( ty - ti)Guida + f po( £, - fi)ﬁuidv = I(Tijénij + sijGSij)dv
a v v
(1.24)

where

n..=¢c. -e L (1.25)

i - %13 T %13 T 2 Y%k,1 kL3
is the nonlinear part of the increment of Lagfa.ngian strain between

configurations 1 and 2,

Let

and i i 1 (1.26)
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which denote the increments of traction and body force between configur-
ations 1 and 2 both measured in terms of the coordinates of configuration
1. Substitution of these in the relation (I.24) yields
fti Su, da + f Py £; GuidV = f(’tij Gnij + sijcSeij)dv (1.27)
a v v

This is the incremental expression of virtual work which in effect
is & statement of the equilibrium equations of the body at configuration
2 in terms of the variables which are expressed in the coordinates of
configuration 1. The proof that (I.27) leads to the incremental equi-
librium equations and the corresponding boundary conditions is given in
Appendix A where the principle of virtual work is derived in curvilinear
coordinates.

Equation (I.27) is an expression for equilibrium of the deformable
body. It is not restricted to any particular constitutive law which

the material of the continuum may obey.
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I.4 Tncremental Constitutive Equations of Elasticity

The constitutive equations of the continuum are written based on
mathematical approximations of physical observations subject to the laws
of thermodynamics, and some invariance requirements like the principle
of material frame indifference [37], [40]. For an elastic continuum it

can be shown that

1 3
i3 = Po I > (1.28)
o€,
iJ
1
1, . _94
8 = - =3 (1.29)
and
GBsy 2 0 (1.30)
where
1 1,1
A = “A( eij,e)
1 1.1
s = ~5( eij,e)
(1.31)
1 1 1
513 sij( Eyg®)
- - ,1
q‘i = q‘i( Eijseseak)

For the deformable body in Figure I.1l, the laws of thermodynamics

for e variable configuration 2 can be written as
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BQQr - BQ(QA + %30) - 25£,k * zgkz zékﬂ =0 (1.32)
and 2-5 .
- 30(2.2\ + “88) + sklgékﬂ, ke k >0 (1.33)
in which
2A = 2Afleij,gij,e) R
%5 = 2S(lsla,gij,e) R
25;5 = 2 (leij,al ,8)
aaﬁ = ql( ST ELEL BN
2r = 2r(l€k2’, gkz,e,e,k) R

2§ij is the Piola symmetric stress tensor in configuration 2 measured

per unit of area a (see Figure I.2), and £, is defined in Appendix
ij PP

B as

0z, 02
"—-li—-&
85 7 5z, o2, €xs (1.35)

It is possible to divide the functions in (I.34) into two parts

°a = tae, ROR XGRS
i3° i
% = ls(leij,e) ¥ s(1€ij,€ij,9)
Zoyy = myy(Tey00) 5, (e, E 100) (1.36)
2—£ - laﬁ(lekZ’e’e’k) +.a(l€k2’gk2’e’e’k)
Zr = Tr(te,,.0,0,,) + r(Te 4,5 ,.0,0,,)
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Substitution of (I.36) into (I.33) results in

1 — ota . — 1 alas 2ake’k 20— — 3A s
(o = g 7 V7 8q = (8 + 3508 - —5—+ (55, - B 5z, +
o€ ko
k&
— 3A 1o - oA, 2
(s, = P, -ar——) Eepg = P+ 550820, (1.37)
€
kL
vhich in view of (I.28) and (I.29) becomes
25 5
2— — 3A - QA | Ll — A, k. °k
k2 k& 0 ekz
(1.38)
In the same manner the energy equality (I.32) reduces to
Pr+p(A+6s+08) -7 . - oy E _s L8 -9 (1.39)
o o X,k k2 "k& k% k& *

Since lékz ’ gkz , and 8 can be chosen arbitrarily, following a

similar argument presented by Coleman and Noll [40] it can be concluded

that
- _ = oA
Skz’ = po als s (1.%0)
kQ
P — 2A
s =00 == 9 (I.hl)
kQ o 9 4,
s = - g—A s (T.42)
and
2= €.. >0 . (1.43)
Qe “ox Z .

These are the incremental constitutive equations for an elastic

continuum.
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A1l the discussion in this section has dealt with stresses

1 2— - . . - .

S.. s S.. s and s,., vwhich are measured per unit of area a in

ij ij 1J
the initial stete. In order to be able to use the constitutive
equations (I.40), and (I.41) in the expression of virtual work (I.27),
they must be expressed in terms of stresses zsij » and Sij which are
measured per unit of area a in configuration 1. The following trans-
formations hold between the Cauchy stress tensor in configuration 2 and

the Piola stresses 2sij and 2sij [29], [31].

=Lt (1.hk)

BZM 3%1
=P _M_N 2=
Thay 5, P} z Smn (1.15)

o
2s. ===z, z ZE (I.46)

= =2 s i
555 =< %i.m %50 Smn (I.47)
o
The incremental constitutive equations in terms of 25. and s

ij ij
can be obtained by substituting (I.46), and (I.L47) into (I.40) and (I.h1).

2 _ oA

555 = P Zi,mzj,n 3 (1.48)

S..=p_ 2. 3%, OB (1.49)
ij o i,m j,n 318
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I.5 Constitutive BEguations in Curvilinear Coordinates

In some problems it is necessary to use curvilinear coordinates.
Compared with the constitutive equations in Cartesian coordinates, the
constitutive equations in curvilinear coordinates are difficult to write,
to interpret physically, and to use in the solution of practical prob-
lems. It has been shown by Carroll [L41],{L42] that for isotropic and
transversely isotropic simple solids the constitutive equations in
terms of Cauchy stress in Cartesian coordinates remain invariant in
orthogonal curvilinear coordinates if the Cartesian tensors are replaced
by the physical components of the curvilinear tensors. This invariance
is demonstrated in this section for elastic materials when the consti-
tutive equations are expressed in terms of Piola symmetric stress
tensor. The form invariance of Piola symmetric stress tensor simplifies
the proof. In Chapter IT it is proved that the invariance of constitu-
tive equations also holds for a special theory of plasticity.

If the curvilinear coordinate system in the initial state ii is
orthogonal then the transformation between the local Cartesian coordi-
nates (associated with unit base vector) on % and the global Cartesian
coordinate system Ei can be performed by the orthogonal transformation

metrix Rij having the property

=8, . (1.50)

Rim ij ij
where aij is the Kronecker delta.
The physical components of the Piola symmetric stress tensor in
orthogonal curvilinear coordinates are defined in Appendix D. They
are given by

)2 gtd (no sum) . (1.51)
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The physical components of the Lagrangian strain tensor are defined as
1
1% - = 421
€.. = .. 8. € um) . .52
i3 = (854 gJJ) 5 (no sum) (1.52)

Since these physical components are associated with unit base vectors
in the curvilinear coordinates in the initial configuration, they trans-

form to their global Cartesian counterparts by

1 ¥ 1

555 = RimBjn S0 (1.53)
*

1" =g R le (1.54)

ij im jn Tmn
1 1 . .
where Sin and €mn 8re the stress and strain tensors in the global

Cartesian coordinate system.

The Cartesian form of the constitutive equations is

s, = 1s(te
Sij5 KL

) (1.55)
If the material is isotropic then (I.55) must remain invariant under

eny orthogonal transformation. In particular for the orthogonal

transformation Rij then

1 1 1 '
Rim Rjn Si5 = s(Rik Rjz Ekz) . (1.56)

Substitution of (I.53) and (I.54) into (I.56) results in

* *
L& = ls(ls. )

. iy (1.57)

Comparison of (I.57) and (I.55) indicates that the form of the consti-
tutive equation has remained invariant. This result is very helpful

in dealing with the shell problem.
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CHAPTER IT: LARGE DISPLACEMENTS, SMALL DEFORMATIONS

II.1 Isotropic Elastic Materials

The constitutive equations

1
A(TE, 58, ,)
- = k°7°ky
10 = P ————537—————- (1.%0)
€xs
and
1
A 5
- _ 7 (e potp) (1.11)
kL o Bakz *

are quite general., If the free energy function A 1is known in terms

1 - 2- R .
of ek% and gkl then skz and sk2 can be determined. Assuming
that A is an analytic function it can be expanded as a power series
of lskl and Ek% . In particular for isotropic materials A can be
expressed as a function of the invariants of lekz and Ekz . For

certain problems a finite number of terms in the power series expansion
is enough to approximate A and hence the constitutive equations
accurately. In the special case where deformations are infinitesimal
but displacements and rotations are not, the retention of the terms

in the power series of A up to the second power of le

ke 24 &y
is enough. Then equations (I.40) and (I.l41) will lead to linear

. - 2- - . 1
relations between the stresses S1p » Sy and the strains €k2 and
gkz ‘

For isotropic elastic materials 2A can be written as

2 A 2 2 2 2
P A=5( eii) +u ( eij)( Eij) (11.1)
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where A and U are the Lame's constants.

is limited to infinitesimal deformations

28 = 2e + & 2e 2w + 2 2w + 2w w )
ij i3 7 2' %ik “kj © ik ki ik kj
where

2e.. =15 + 2ﬁ. )
ij 2 1,4 Jst

2 1 ,2- o-

w,, ==("a, .-, .)
ij 2 i,3 g1

The displacements 2ﬁi
the initial configuration (see Figure I.l).

that

where

.. =

zZ .Z_ . € .
ij m,in,j mn

Substitution of (II.3) and (I.35) into (II.l) results in

o 2 1,1 1
Al Eij) = “A( Eij) + A( eij’gij)

where

1 AL 2 1 1

PA =73 ( eii) +pu eij)( eij) R
and

A2 Al 1

PR =5 &5 +HE &t 23 €53855 ¥ M Ti5%55)

Equations (1.40) and (1.41) become

S, = A8 g

) ke Gii F M By o

30

In (II.1) the strain 2Ei

(11.2)

being in the direction of coordinate systems of

It is shown in appendix B

(11.3)

(1.35)

(II.4)

(II.5)

(I1.6)

(II.7)



o 2 2
Big = Abyy (Tegp) +2u (Te )

and the constitutive equations (I.48) and (I.49) become

P
2 _ P 2 2
sij = D_—-O zi,k Zj,z [As, . ( Eii) +2u (%, )]

k% k%

Po

®iy T 7, 23k %35, (A8, gii+ 21 g,
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(11.8)

(11.9)

(I1.10)




IT.2 Remarks on Some Recent Developments in the Theory of Plasticity

The study of plastic deformations of materials has been under
consideration for almost a century. However, most of the investigations
have been limited to infinitesimal deformations and even then the
diversity of opinions and observations has led to various specisl
theories of plasticity. Detailed account of these is given in Hill's
book [59] and the review papers by Naghdi [43] and Koiter [44]. Only
very recently the construction of a large deformation theory of plas-
ticity, based on the principles of thermodynamies and the invariance
requirements in continuum mechaniecs was undertaken by some investigators.
A brief review of some of the recent developments in the theory of
inviscid plasticity is given in this section and some remarks are made
to show the relationship among them.

Since many assumptions existed in the theory of plasticity, it was
desirable to introduce concepts from which several of the assumptions
could be derived consistently. One such hypothesis, now called Druck-
er's postulate, was presented by Drucker [45]. It states that the work
done by an external agency on an elasto-plastic material going through

a closed cycle of stress is non negative. That is,

W. >0, (I1.11)

The Mises-Prager plastic potential stress-strain relations and the
convexity of loading surface are derived from this postulate. Later,
J1'jushin, who was motivated by the observation that in general
Drucker's postulate does not assert the irreversibility of plastic

deformations, introduced another postulate [46] which states that the
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work done by an external agency on an elasto-plastic material going

through a closed cycle of strain is positive. In particular
W > Wy >0 . (I1.12)

This hypothesis leads to normality rule, however, it implies the
sufficiency rather than the necessity of convexity of the yield surface.
The use of the laws of thermodynamics in the construction of the
theory of plasticity is a more logical approach than the other methods
which use the conclusions based on a limited class of physical obser-
vations. The investigations in this area prior to 1960 are very few
and are mainly on infinitesimal theory of plasticity [L43]. Sedov
recognized three configurations in the process of elasto-plastic defor-
mations of the continuum [47] (see Figure II.1): an initially free of
stress state, a current configuration with complete elasto-plastic
deformations, and an intermediate configurétion which is obtained when
the stresses in the body at current configuration are released. Thus
the total deformation is composed of an elastic part which is between
configurations (c) and (b) and a plastic part between (a) and (b). In
general the intermediate state is not Euclidean. Sedov develops a
theory of plasticity based on this kinematical model and some thermody-
ﬁamical considerations. Drucker's postulate is used in a thermodynamical
context and the associated flow rule is derived. Backman also intro-
duced the concept of the three configurations [48]. However, he defines
the elastic and plastic components of strains directly in terms of the

displacement gradients. Due to the non-Euclidean character of the
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intermediate configuration the definition of elastic and plastic com-
ponents of strain in terms of the kinematics of deformation is not in
general correct. Lee, and Liu [L49] recognize the non-Euclidean char-
acter of the intermediate configuration and define the kinematics of

deformation by

P
[F] = [F°1[F ] (II.13)
vhere
'BZA
[Pl = —=; (IT.1%)
024
J
and [F%] , and [FP] are linear transformations between configura—

tions (b) and (c) and (a) and (b) respectively (see Figure II.1l).
These transformations are not in general the displacement gradients
between the corresponding configurations. Lee and Liu develop a par-
ticular theory of plasticity for the application to a one-dimensional
wave propagation problem.

Recently Green and Naghdi [50], [51] developed a general non-
linear theory of plasticity which utilizes the thermodynamical laws
and the invariance requirements in the theory of continuum mechanics.
For the kinematics of deformation it is assumed that Lagrangian strain

tensor can be divided into two parts as

=e5 + e? (11.15)

€. . . .
1J 1J 14
vhere eij s and eij are called the elastic and plastic components of

strain respectively and they have the same invariance properties as

eij . No kinematical interpretation is given for Eij and Eij , and
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they are found from the constitutive equations only. It can be shown
that the kinematic idea in [U4T], [49], and [50] are equivalent.
The Lagrangian strain between configurations (a) and (c) can be written

as follows in matrix notation
T
2[e] = [FI[F] - [1] (I1.16)

where [I] is the identity matrix. Substitution of (II.13) into -

(11.16) gives

2le] = [FFIT[Fe1TIFRIIFT] - [1] . (11.17)

Subtraction and addition of the product [FP]T[FP] from (II.17) and

rearrangement of the terms on the right hand side results in
2le] = ([FITIF ] - [1]) + [FORCIFS1TIF®] - [IDIFT) . (11.18)

The first and second terms on the right hand side of (II.18) can be

defined as plastic and elastic parts of strain. Thus
P e
(el = [e7] + [e7] (11.19)

which is the same as (II.15).

It is shown by Green and Naghdi [S50] that the second law of ther-
modynamics puts a restriction on the plastic deformation., This
restriction is more general than Drucker's postulate. In particular
it is shown that for the infinitesimal uniaxial tension test the
plastic volume change is not zero unless Drucker's postulate is adopted
[52]. Thus they conclude that Drucker's postulate is not general

enough but is a good assumption for some materials like metals. In the

36



same paper [52] they specialize the general non-linear theory and obtain
a bilinear stress-strain representation for a uniaxial tension test.*
The theory of plasticity in [50] has been extended for the elastic-
plastic multipolar continua [53], and also to Cosserat surface [54].
Following Coleman an¢ Noll's approach [L40], Dillon [55] has

arrived from the second law of thermodynamics at the result that the
loading and unloading stress-strain relations are different for mate-
rials in which the dependent thermodynamical variables are functions of
deviators of stress and strain. Thus, he rationally arrives at a
feature essential in plasticity. Another approach in the study of the
theory of plasticity was followed by Pipkin and Rivlin [56] who use a

functional theory for the rate independent materials and essentially

dynamical concepts. They use Il'iushin's plasticity postulate.

*It seems that the assumed form of the hardening parameter in [50] leads
at most to a bilinear stress-strain characteristic in uniaxial tension.
The hardening parameter must be given a more general form in order to
obtain 'a curvilinear one-dimensional stress-strain representation.
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II.3 A Special Form of the Theory of Plasticity

The general theory of plasticity developed by Green and Naghdi
[50] can be specialized for application to specific problems. For any
material it is possible to introduce further constitutive restrictions
and hence reduce the general theory to a more tractable form. For
example, in the case of metals Drucker's postulate and von Mises
yield condition are good constitutive assumptions which simplify the
general theory appreciably.

In this section after a short re&iew of the general equations,
the elastic-plastic constitutive equations for homogeneous and
initially isotrépic materials are studied. Drucker's postulate and
von Mises yield condition are assumed and specific forms of the hard-
ening law are considered. The treatment will be limited to isother-
mal processes.

Consider a deformable body on its path of deformation from an ini-
tial state to a final configuration (see Figure I.1). At time t the
material points of the continuum have coordinates zZs and all together
form configuration 1. In this configuration the isothermal yield
function Which is a regular surface containing the origin in the stress

space may be expressed by

f(ls . leP Y =k (II.20)

ij ij
where K 1is the hardening parameter depending on the whole history of

motion of the body and lsf. is called the plastic strain tensor and

is given by
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e = 1P & tes,

. . (11.21)
ij ij ij

in which legj is the elastic strain tensor. Both legj and 18§j

have the same invariant properties as lsij but they are determined
only from the constitutive relations and not the kinematics of defor-
mation.

Green and Naghdi [50] have shoﬁn that if there exists a linear
1-pP 1.
s

relationship between “€,., and .. then
L 1J
SR J - S A>0 (1I.22)
ij i} alS mn
mn
during loading where
- y of 1
f=K,K#0 T §.0 >0 (Ir1.23)
97 s
mn
. R 1 1p .
In (II.22) X is a scalar function of s and g , and B,. is
mn mn ij
a symmetric tensor which can be written as the derivative of some
. X 1 1P
potential function gl Sij > €13 )
B,, = & (11.2L)
ij 1
97 s. .
ij
Therefore,
P ooy le (1I.25)
+d Bls
ij
vhere
T=a2E g : (II.26)
mn
da7s
mn
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As in the infinitesimal theory of plasticity three types of behavior
are postulated for the material. These are:

Loading, during which légj # 0 and is given by (II.22) and

f=x ,k#0, T on > 03 (I1.23)

9's
mn
Neutral loading for which leij =0 ,-and
. af 1.

f=x ,k=0, =0 (11.27)
1 mn .
3 S

Unloading from a plastic state during which lé?j =0, and

QL
H
i)

or mn (I1.28)

In general the measure of hardening K is a functional of the
entire history of deformation and temperature. A representation of K

for isothermal deformations is

t
K = F(j h) (I1.29)
-0
. o1 1P 1 1P
h = h( S;5° Si5> Sij° eij) (11.30)

For an inviscid continuum h is independent of the time scale and
. 1- 1P . R
homogeneous of degree one in Sij , and Eij . Then in view of

(I1.22) x can be written as
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1P
ij
K = F( J[ dh) (I1.31)

dh = ah ('s (11.32)

The initial yield surface is only a function of stresses; and for
initially isotropic materials it is a function of invariants of stress
tensor. In particular it has been found that for metals hydrostatic
stress of the order of the yield stress does not affect the yielding and
plastic deformation [57]. Therefore, the initial yield surface can be

written as

f(J2, J3) =k (I1.33)
where k 1is a constant and J2 and J3 are the second and third
invariants of the deviatoric Cauchy stress tensor Tij .
J, = L T! 1! (11.3%)
2 2 ij ij : *
= ' 1 1
Iy T Tap Wi (11.35)
TV = T, -%=§ T (11.36)
ij ij 3 71ij Xk

Experimental evidence indicates that for metals the yield function can

be approximated by von Mises yield criterion [43, 58] which is
t=Jd,=k (II.37)

Equation (II.20) shows the set of all loading surfaces. The shape
of these surfaces depends on the scalar functional Kk . In the
infinitesimal theory of plasticity different.mathematical models,

called hardening rules, have been proposed to approximate the form
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jof the subsequent yield surfaces after the initial yielding [U3]. These
hardening rules can be used in the large deformation theory also. One
of these is the isotropic hardening law which asserts that the shape of
the yield surfaces at higher stresses is a uniform expansion of the

initial yield surface. Mathematically this can be written as

£('s;,) = (11.38)

For von Mises yield condition the isotropic hardening law is of the

form (see Figure II.2)

Q|
[
~

where (11.39)

35,=0

Two simple measures of hardening have been proposed in the
infinitesimal theory of plasticity [57]. The first one states that «
is a function of plastic work, and the second states that it is a
function of the so-called equivalent plastic strain., It is assumed
in this work that these two measures can be used also in the large
deformation theory. If the increments of plastic work and equivalent

plastic strain are defined by

dw_ = JLs.. d lel.). , (I1.%0)
P ij ij

and 1
2

de = [%d (lelzj) a (lefj)] (T1.11)

respectively then the functional k in (II.31) can be written as
1P
€, .
1J
K = F(‘/' awy,) (11.k2)
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and
1P
i
K = H(j' ae) (I1.43)

In the solution of problems the form of the function kK as determined
from some experiment, e.g., simple tension test is used (see Figure II.3).
Another constitutive assumption which simplifies the general theo-
ry eppreciably is Drucker's normality rule which asserts that the
increment of plastic strain vector is normal to the yield surface. This
requirement indicates that the plastic potential g in (II.24) is the

seme as f , and equation (II.25) becomes

atef = ax 2 (IT.hk)
1d Bls.
ij

where for the von Mises yield criterion

9T
of _ _of mn (I1.L5)
3 s,, 9T _ 9s
ij ij
T'
=3 _m( 2, z_ )
2 — n,1 n,J
o o]
Since
o _p_o(z 7z -xg 1oyt (1II.46)
m P, mi m,j 3 mn “ij ij ° )
Therefore,
of 3 1 (
= =— B, II.L7)
Bls., og tJmm mh
ij
where
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and
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II.4 Stress-Strain Relations

The relationship between the stress and elastic part of strain can

be written as

le

a( s;5) = ) a(Tey) (I1.50)
where
Aijk2 = A Gij 8, g + M8, sz + ij Gil)' (11.51)
During loading
of 1 oK 1P
—d(7s..) = =—=—d(7e.,) (11.52)
ols. . N 1
ij ij

1 rtuv a( Euv
_ 9 St
ax = 3T ( 3% . 37 R : (11.53)
I 1P L 15k8
9 Syp ) ®ij
Hence the plastic strain increment (II.44) becomes
of of A
alS 3ls rtk{
1P, _ ° Sij rt 1
a( eij) = = a( ekz) (II.54)
where
af oK af
b = ( + A ) (11.55)
Bls BleP Bls upa
q pa uv
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Substitution of (II.54), and (II.21), into (IT.50) gives
(II1.56)

vhere

c, =4, -vta . a 2L 2
ijpa  ijpa 1jk% “uvpg 41
v

. (1I.57)
Sk,

oK
The derivative —g—p— in (II.55) depends on the form of harden-

>
3
ing parameter k . For work hardening (II.42) this derivative can be
written as
1 .
;‘EKP = Sun 2 (11.58)
97€ W
mn

K
_%F can be determined from a simple tension test where it will be the
ok
slope of the hardening curve F' (see Figure II.3(a)). Therefore

=F' 7g (11.59)

For strain hardening (II.43) the derivative lKP can be written as
9 €,
ij
—p
&K __ _ g g 2 (II.60)
alef m
mn

wvhere H' is the slope of the stress-plastic strain curve in simple
tension (see Figure II.3(b)). The relationship between awt  and
dEP can be determined as follows. Substitution of (II.L4L) into

(II.41) results in
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L
—p 2

e = [%(d’x‘)2 —%i¥—-—§£——4 (II.61)
9°s,. 9 s,
i ij
from which dA can be found
P
ax = de - (1I.62)
3 Bls als. .
ij

Substitution of (II.62), (IT.h4), (II.4T) and (II.L0) into (II.60)

gives
2001
iK - : U (11.63)
P - mn
€ g
mn
where
1 1
B.. B.. s s
d2 _ ijk® Tijrt kL Trt (II.64)

1 1
B s s
pquv pg uv
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II.5 Constitutive Equations in Curvilinear Coordinates

The form invariance of the constitutive equations in Cartesian
and orthogonal curvilinear coordinates discussed in section I.5 also
holds for inviscid plastic materials with constitutive relation (II.22).

Substitution of (II.21) into (II.S50) gives

(Ys..) = (e ) - (*ef,) .

) = A, a A.. . d II.
ij iipa €q) ~ Pijke (I1.65)

d

Since this is an isotropic relationship the corresponding equation in

curvilinear coordinates in terms of Cartesian components would be

y# a(te )= (II.66)

as. )# = (4., )* alte )* - (a, .

ij ijpq pa ijk%

where the asterisks over the tensors indicates Cartesian components.

Due to the linear relationship between dlsij and if in (II.4k)
. o s.
then 13

1P yx _ f \x
al( sij) ar (als )E (II.67)
ij

dA is a scalar and can be written in terms of the physical components
of the tensors in (II.53). Therefore, substitution of (II.6T) in

(I1.65) gives

1. _ 1
a( sij)* -(ciqu)* a( epq)* (11.68)
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1I.6 Approximate Constitutive Equations

The time rate of change of stress and strain lsij and leij
can be written as
2~ 1 -
1 Suv T Suy Suv
oy = Lim ( s ) = lim (-75; (11.69)
At->0 At~0
1. 2€uv B lsuv guv
€, = 1im (—-—At————) = lim ('E (11.70)
A0 At>0

The stress-strain relationship (II.56) can be approximated by substitu-

. - 1 1
ting S v for 4f suv) and guv for 4f Euv) . Then

s.. = C.. (1I.71
ij ijpq qu )

Substitution of (I.35), and (I.47) into (II.T1l) results in

e
~ "o
kL :T'(Zk,m Zl,n Cmnrs Zu,r Zv,s) Euv (11.72)
0
o

The corresponding relation in curvilinear coordinates is

<]

p

(4% = 20 (5 ped ) *05 D*(T )#(™T0 ) w (e ) (11.73)

-°
o
where the asterisk over the tensors signifies the physical components.

The physical components of the displacement gradients can be written as

(5 ye = (e o /g X (11.7%
X5 -(;EJ = Vg &0 X, (no sum). II.74)
X
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If an initially orthogonal convected curvilinear coordinate system is

used, then
_ ik
Koy = 8 (II.75)
Substitution of (II.T4) and (II.T5) into (II.T3) gives
p
o ~kk =24 =Trr =58, (KArsyy
=2 N, B (g 8 ) (e, B 7) (8, %) (%) (e ) (11.76)
p0
For simplicity define
k
Syg = (s hye
_ *
s = (Epg)® s (11.77)
klrs
Ck!?,rs = (c )*
and
p
- .o ~kk -48 -rr =55, ( KATS 5
Oy = =2 A B )N ey 8 ) (e, 80 ) (g, &) (%)%,
[o]
then equation (II.T73) becomes
(IT.78)

= (O
Sk Ckzrs ers .
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CHAPTER III: LARGE DEFLECTION ANALYSIS OF ELASTIC-PLASTIC

AXTSYMMETRIC SHELLS OF REVOLUTION

Many investigators have tried to construct general non-linear
bending theories for shells. The problem is not yet resolved complete-
ly and certain fundamental questions like the reduction of the general
three-dimensional constitutive equations for thin shells, or the devel-
opment of a general two-dimensional theory present difficulties,

Indeed there is not yet a unique definition for a shell type continuum.
A complete review of the developments in the nonlinear theory of shells
is out of the scope of this work, however, some major contributions
will be mentioned.

Two different approaches have been followed in the construction
of linear and nonlinear bending theories of shells. The first method
consists of reducing the general three-dimensional equations for
shells in which one geometric dimension is much smaller than the other
two. Synge and Chien [61] developed an intrinsic theory for elastic
shells; they treated linear constitutive equations. Green and Zerna
[62], and Naghdi [61) have expressed the non-linear kinematics in terms
of displacements and treated linear elastic constitutive relations.

A theory of elastic shells with small deformations and non-linear

elastic response was constructed by Wainwright [63]. Naghdi and Nord-
gren [64] developed a particular theory subject to Kirchhoff's hypothesis;
they consider large displacements and non-linear elastic constitutive
equations. Recently Green, Laws, and Naghdi [65] have constructed non-

linear thermodynamical theories for rods and shells using the
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three-dimensional theory of classical continuum mechanics.

In the second approach the shell is considered as a Cosserat
surface, i.e., a two~dimensional continuum to each point of which a
director is assigned. The kinematics of a shell considered as a
Cosserat surface was given by Ericksen and Truesdell [66]. Special
theories in which the director is identified with the inextensional
normal to the surface and which remains normal after deformation,
corresponding to the usual Kirchhoff's hypothesis, were developed by
Sanders [6T], Leonard [68] and Koiter [69]. A general theory of a
Cosserate surface was constructed by Green, Naghdi, and Wainwright [70]
who discuss both the kinematics and the constitutive equations for the
surface. Green, Naghdi. and Osborn have developed the elastic-plastic
constitutive equations for a Cosserat surface [54].

The equations for the non-linear analysis of shells of revolution
can be derived from any of the above theories. A set of equations,
which have been widély used by investigators in solving practical
problems, have been derived by E. Reissner [71] for linearly elastic
shells of revolution. He assumes Kirchhoff's hypothesis and his
development is restricted to infinitesimal deformations but large
displacements.

The importance of nonlinear analysis of shells of revolution was
discussed before. In practical problems closed form solutions for
such cases do not exist and resort must be made to numerical techniques.
In this chapter after a review of the numerical methods of solution
of shells of revolution, shallow caps, and circular plates, the incre-~
mental approach developed in Chapters 1 and 2 is specialized for the
large deflection elastic-plastic analysis of axisymmetrically deformed
thin shells of revolution. The formulation is suitable for the direct
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numerical methods of analysis of variational problems, and in Chapter

i the problem will be solved by the finite element technique.
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I11.1. Review of Numerical Methods

In this section the numerical methods of analysis of shells of
revolution are considered. Three forms of this structure, namely, circular
plates, shallow spherical caps and axisymmetric shells of revolution are

discussed separately. The division in presentatien is not intended to show

the diversity of the general methods used in analyzing the nondinear behavior

of these structures, but rather it is dietated because of the existence of

rather vast amount of literature for each case.

I1I1.1.1. Axisymmetric shells of revolution

Several numerical methods ‘such as finite difference, invariant
imbedding, and finite element techniques have been used for the large de-
flection bending and membrane analysis of shells of revelution. Finite
difference method with iterative schemes has been used by some investigators
for linearly elastic shells of revolution [72-76]. Witmer, et al., [77]
used finite difference together with a lumped parameter technique for
elastic-plastic materials. They used von Mises yield eondition and the
associated flow rule of plasticity. Inconsistencies arise in their method
in the plastic range unless the number of lumped layers in the thickness of
the shell is large. A combination of finite difference method and Newton-
Raphsun iterative scheme was used by Stricklin, Hsu, and Pian [78].

They utilized a special theory of plasticity with the Tresca yield condi-
tion. In general, the finite difference method is difficult to use for
certain boundary conditions and since the variation of shell geometry and
material properties must be expressed analytically the method loses its
value when these variables cannot be easily represented analytically or

by curve fitting,
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The invariant imbedding technique which.reformulates the boundary
value problem into an initial value problem was appliecd by Kalnins and
Lestingi [79] for elastic shells of revolution. The instabilities in this
numerical technique have been pointed out by Fox [80]. The disadvantage
of the method is that instead of one problem a family of problems should
be solved [79,81].

The finite element method is capable of hacling various boundary
conditions and sharp variations or jumps in the geometrical and material
properties. The displacement formulation of the finite element method has
been used for the posi buckling analysis of elastic cylindrical shells by
Schmidt, Bogner and Fox [32]. They used ar iterative scheme and compatible
elements in the forwr of cylindrical strips. Stricklin, et al, [82,83] have
treated the symmetric and asymmetric large deflections of elastic axisym-
metric shells. of revolution. Their incremental scheme is not consistent
because strains and stresses are expressed in two different configurations
of the shell. Navaratna, et al., [84] solve the linear bifurcation buckling
of elastic shells of revolution by superposing asymmetric buckling modes s
the axisymmetric prebuckling deformations.

The nonlinear membrane analysis of elastic shells of revolution
has been considered by many investigators. The case of small deformations
and Large rotations has been treated by asymptotic expansions [85,89],
asymptotic expansion with the Ritz method {88], numerical integration with
an iterative scheme [86], and asymptotic integration [87]. The problem of
large deformations and rotations has been solved by matched asymptotic
expansion [90,91]. It is found in [90] that the circumferential mem-

brane force in a toroidal shell is remarkably different when both large
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deformations and rotations are considered. A .general nen-linear membrane
theory of shells which includes the effect of finite strains has been
derived by Rajan [92]. Salmon [94] has treated:the membrane seolution of
large plastic deformations of a cylindrical shell. He utilized both the
incremental and the deformation laws of plastieity and eobserved that as
the length of the cylinder increases the results of the twe theories agree
rather well. His results also confirm the validity ef the approximate

method used by Weil [93] in the case of long cylinders,

III.1.2. Shallow caps

The analysis of spherical caps has been the subject of a great
number of investigations. The nonlinear behavior of this structure is
sensitive to several factore such as the geometriecal parameter
Azé ¢12(1—V2) %- where V is the Poisgson's ratio, h is the rise and t
is the thickness of the shell; the type of applied load; the initial im-
perfections; and the material property. The influence of these factors
on the pattern of displacements and buckling is seo .signifieant that up to
now there is no complete agreement between the theoretical and experimental
results., The nonlinear differential equations of shallew shells were
derived by Marguerre [95]. Also, E. Reissner gives a set of equations for
shallow caps [96]. 1In both cases the deformatiens are considered to be
infinitesimal but deflections are finite.

The problem of finite displacements and buckling of shallow
spherical caps under uniform normal load was investigated both experi-
mentally and theoretically by Kaplar and Fung in 1954 [97]. 1In the theo-
retlcal method axisymmetric deformations were assumed and a perturbation

technique was used with the central .deflection as the perturbation parameter.
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Great discrepancy was noted between the experimental and theeretical buck-
ling loads for values of A > 4. Since that time a great deal of effort
has been made by many investigators to close¢ the gap between the experi-
mental and the theoretical results. In the early researches the mode of
deflection was assumed to be symmetric and buckldng was theught to occur
by a symmetric snap through process. The results of sueh dnvestigations
[98-101] do not agree both with the experiﬁental results [97] and also
among themselves for A > 4, although they all use the same set of dif-
ferential equations [95]. Among the various numericel procedures for the
analysis of axisymmetric large deflection of uniformly leoaded spherical
caps the integral method of Budiansky [101], power series method of
Weinitschke [102], the residual method of Thurston [103], and the direct
iterative technique of Archer [104] give the same upper beund solution for
the buckling load. Lower bound solutions for the buckling load were given
by Reiss, Greenberg, and Keller [98] using power series expansion and by
Thurston [103]. Budiansky [101] and Thurston [103] studied the effect of
initial imperfections on the axisymmetric buekling of uniformly loaded
shallow spherical shells. Budiansky, who used smooth imperfections, con-
cluded that for A > 5 the inclusien of imperfeections camnot close the
gap between the experimental and theoretica. results. Thurston, using
rough imperfections, points out that the inclusion of imperfections in

the analysis of caps is important. The experimental results by Krenzke
and Kierman [105], on highly accurate aluminum specimens, whieh show higher
buckiling loads than Kaplan and Fung's experiment suppert Thurston's point
of view.

Since the theoretical results on the symmetrical buckling of

uniformly loaded shallow spherical shells do not agree with experimental
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evidence for A > 5 it was concluded by some investigators that the process
of buckling may be unsymmetric although the initial anc¢ final configurations
are symmetric. Weinitschke [106] superimposed small asymmetric deflections
on finite axisymmetric displacements and obtained buckling loads which are
close to experimental values of [97]. Huang [107] selved the variational
formulation of the unsymmetric snmap througi. buckling numerically and ob-
tained buckling loads higher than the experimental results in [97] but
lowver than the axisymmetric theoretical calculations. His results are
close to the experimental buckling loads of Krenzke and Kierman [105].

Contrary to uniform or partially uniform loading, the theoretical
and experimental results of shallow spherical caps under concentrated load
agree rather well [108-112]. It is found that, unlike the uniformly loaded
cap, the snap through occurs at very high 1§ads° The experimental results
in [111] indicate that symmetric snap through occurs for A < 6.5 and
asymmetric buckling occurs for A > 10.2. The theoretical study of spher-
ical caps under concentrated load has also revealed the fact that buckling
of the bifurcation type may occur even before snap through happens [110-
114].

Experimental results of uniformly loaded spherical sandwich
shallow shells by Lin [115] emphasize the importance of including the non-

linear behavior of material in the buckling analysis.

I11.1.3. Cixcular plates

The governing differential equations for the bending analysis of
infinitesimal deformation but finite deflections of thin elastic plates were
derived by von Karman [116]. For the case of axisymmetrically loaded and

supported circular plates the von Karman equations -reduce to two coupled
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second order non—linear ordinary differential equatiens. Corresponding
equations for circular plates can be obtained by simplifying E. Reissner's
equations for axisymmetric shells of revolution {71].

Two approaches have been followea for the selution of the differ-
ential equations of large displacement bending analysis of elastic circular
plates. In the first approach the von Karman equations are further sim-
plified and then solved exactly. This method was used by Berger [117],
who neglected the strain energy due to the second invariant of middle
surface strains, and by Goldberg {118], who neglected the Gaussian curva-
ture in the compatibility equation for membrane strains. Both Berger and
Goldberg arrived at a set of uncoupled equilibrium equations. Berger's
simplification was later used for the vibration analysis of circular
plates [119] and for the problem of circular plates on elastic founda-
tions [120].

In the other approach approximate solutions have been sought
for von Karman's or E. Reissner's equations by different mathematical
methods. Power series expansion method, where the rariables are ex-
pressed in powers of the radius from the center of the plate, was used

by Way [121]. Bromberg [122] used a perturbation method by expanding
R

12(1-v?)
where R, and h, are the radius and thickness of the plate, respectively,

1/3
Ry

the variables in terms of the perturbation parameter k = T

p 1s the intensity of the applied uniform load, and E and Vv are the
Young's modulus and Poisonn's ratio, respectively. As pointed out in [122],
the perturbation method gives correct results for k < 1, and the power
series method for 1 < k < 15. For larger values of k, however, boundary
layer effects become important near the edge of the plate and the above two

methods fail to give accurate results. In such a case a boundary layer
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solution, employing asymptotic expansion, has been used. This method was
proposed and used for the solution of the problem of circular plates by
Friedrichs and Stoker [123] and was later modified by Bromberg [122]. Hart
and Evans [124, have applied the method of asymptetic expansion for the
annular plates. Keller and Reiss [125] applied an iterative scheme to the
boundary layer solution in [123]. Their method together with finite dif-
ference equations have been used by Hamada and Seguchi [126] for the
analysis of annular plates.

The large deflection analysis of elastic-plastic circular plates
has been considered by several investigators. The order of geometric non-
linearity is the same as in von Karman's theory. For the material non-
lipearity different constitutive lawg-have been employed. Rigid plastic
materials were analvzed by Sawczuk [127] for static loads and by Jones for
dynamic and impulsive loads [128,129]. Deformation theory of plasticity
was used by Ohashi and Murakami [130,131] for elastic perfectly plastic
materials. The results of their calculations fall within the range of
Budiansky's criterion for the physical validity of the deformation theory
of plasticity [132] and the comparison o>f their theoretical and experimen-
tal results is satisfactory. Using the deformation law of plasticity
Naghdi [133] and Ohashi and Kamiya [134] analyze the large deflections of
circular plates with hardening materials. A lumped parameter method was
employed by Crose and Ang [135], who divide the plate thickness into three
layers. The cop and bottom layers are thin and are in a state of plane.
stress, and the niddle layer has infinite shear stiffness and no resistance
to bending. They use flow theory of plasticity.

The observation common in all of the above investigations on the

large deflection of elastic-plastic circular plates is that the effect of
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membrane forces in the plastie range is significant even for relatively
small displacements, and that the load carrying capacity of the plates is

more than that given by bending collapse load.
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III.2 The Strain~Displacement Relations

The coordinate system on the middle surface of a shell of revo-
lution in configuration 1 is chosen to be orthogonal and coincide with
the principal lines of curvature (see Figure III.1l). It is assumed
that the deformation of the shell follows Kirchhoff's hypothesis which
asserts that the unit normal vector to the middle surface in configura-
tion 1 remains normal to the middle surface of the shell in configura-
tion 2 and that its length does not change. Then the convected form
of the coordinate system xi remains orthogonal and coincides with the
principal curvature lines in configuration 2 for axisymmetrically
loaded and supported shells of revolution.

It is shown in Appendix E that the strain-displacement relations
for axisymmetrically deformed shells of revolution when Kirchhoff's

hypothesis prevails are

2 w
= 1.2, X _n
e:ss—es+2es+2 +C[(wS’S+RS)+
s “n Wy
r T es(ws,s tg ) - X(mn,s —g )17
s s s
(I11.1)
) ®
2.1 n 1 n .2
Sl log ety ) vg o gty ) 7
s s S
w
1 s 2
E'(wn,s "R )71 ?
s
and
1 2 9
Eee"ee+Eee+C[wr(l+ee)+'1§]+
" (I11.2)
2 T 1 2
C[R_+2wr ] ’
where
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eg =-%'(u cos$ + w sin¢) , (111.3)
e, = u, + - (TII.L)
s ’s R_°® :
s
u
X= gs- - Wi (111.5)
1+ eS
W = cosw -1 = : -1 (TII.6)
n (1L + 2e +e2+X)]‘/2 ’
s s
w, = sinw - ey - (111.7)
, (1 + 2es + e +x)
and
W, cosp + W sing
_ _s n .
w, = = : (111.8)
Ess and eee are the physical components of meridional and circumfer-

ential strain tensor. u and w are the physical components of
meridional and normal displacements of the middle surface of the shell
(see Figure ITI.2).

If the shell is thin, expressions kIII.l) and (IIT.2) can be

simplified further by assuming that ;2 ® 0 . Then

_ 1.2, X o
ss & 2 %s * 2 * ;[(m * Rs) *
e, 0 @ (111.9)
§—+e(w +2) - xlo, o -59],
S S S
and
_ 102 e
€gg =St 5% * C[wr(l + ee) + R—] . (1I11.10)

Also for thin shells whose deformations are infinitesimal such that

2 <<
ee ee

restriction that xn << X, n > 2 , the strain displacement relations

2
,» and e << e, » but whose rotations are large with the
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(I11.9) and (IIT.10) can be simplified still further. Then

1
(1 + 2es + e: + ¥) 2w g %-(2es + es + Xz) , (1IT.11)
W, =X - Xeg o (111.12)
2
w = - %, (III.13)

and the strain-displacement equations become

Ee = €t LK, (TIT.14)
and
€gg = €p * T Kp » (T1I.15)
where
2
e =e + %g- (1I1.16)
€9 = €4 (TIT.27)
®sy . (X
ke = 06 + 7 + (= _ X o ) (IT1.18)
s s 8,8
cos¢d Eg 1l _sing 2
Kg = ( X Re) + 3 [ > X + cos¢(ee - es)x] (111.19)

Ks and Ke are the meridional and tangential change of curvatures.

The strains ess and 666 can be written as the sum of a linear and a

non-linear part

= + (III.20)
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where the linear part is

e K®°

SSs S s
= + (III.21)

eee e6 K®

1
nSS -él KS
= + (11I.22)
n 0 Kl
60 6

The linear and non-linear components of the curvature vector are

- es—
KS X’S + i{;—
> = [ . (III.23)
e
G| |emtaen
N 0 |
and
2
1 X
Ks R~ X s,s
= s (III.2L)
1 1 sinp 2 _
Kg > [- =5=x" =+ cosd)(ee es)x]
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I11.3. The Constitutive.

Equations

The symmetry of deformations and Kirchhoff's hypothesis require

33

103 _ a3 _ 1 _ _ \ 1
that s~ =0, s~ =0, €13 = 0, and €i3 = 0. If the strains 833
1
. <
and Eqq are not assumed to be zero but .are such that €33 < 1, 833 << 1
and 1€ << le €,4 << eaB then the strain-displacement relationships

33 0B’

of Section III.2. are still a good representation of the kinematics of

deformation of the shell.

that 1333 =0, and s

33

If the shell is thin, then it can be assumed

= 0. With these restrictions on stresses and

strains the constitutive equations (II.78) can be written as

= '
smB CuBYS €_YG + CQB33 833 . (T11.25)
and
= 1 1
S35 C33Y6 EYG + q3333 €33 . (III.26)
Solve (II1I.26) for €35 and substitute in (III.25) to get
SaB = CGBY5 EYG , (I11.27)
where
Cl Cl - 1 Cl
ETaByG = aByd 3332' 033 733Y6 (II1.28)
3333

III.3.1. Strain hardening materials

For materials which obey the strain hardening law (II.43) the

stress strain relations (II.74) are reduced to

11 Ci111

892 Co211

along the principal directions of the shell.

122

€222

€

11

22
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(I1I.29)

The transformation coefficients




in (III.29) are calculated from (III.28). These are

3
ey - A E - 2
3 _ 2k [z + (1-2)S. 2] (I11.30)
2222 = A Q& )8, ’ .
T - C = AB Z [vz - (1-0)s,8,]
1122 2211 y 151
where
Q = A-v3)r + @-0)(s.2 + 2vs.s. + 8.%) (I11.31)
1 15, * 5, .
A = Vg o , B = /g, Fa (I11.32)

where EiJ and gij are the metric tensors associated with the convected
orthogonal curvilinear coordinates of the shell in the initial state and

configuration 1, respectively. On the middle surface of the shell they

coincide with ;ij and aij’ respectively. Also
V37 a b 2 e2
Sy =732 oo s 8 =V32 5o . @ =Hm (I11.33)
a“+b
- 1 1
a = Byjy33 833V Bi192 S2p o
_ 1 1
b = Byjyyz S11 t Baaan Spp (III.34)
2 1 1
e = a s11 + b 522 .
and
B - 2 lC 2 (&3_ )2
1111 3 C1 (=
b
o
= __:l._l 1 _o 2
Biiga = Bap11 T T3 Oy Cpp (=) (II1.35)
po
o
_ 21, 2,702
Byaoa = 3 Ca (3 )

P s 1
Since the curvilinear coordinate axes are convected, then CaB can be
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directly expressed in terms of metric temnsors. In particular

1 =11 —11 i i
Cy = /(gii g )(g; 8 ) 6§ 87 (no sum)
—11
817 8 s (I11.36)
and similarly
1 _ —22
022 = 859 8 . (I11.37)

Substitution of (III.36), (III.37), and (II.49) into (III.35) results in

1
. g1+2 €11
1111 3 1 ?
142 €22
B B - l- (111.38)
1122 2211 3 ’ °
and
1+2 L
B =2___l
2222 3 1 :
1+ 2 ell

The relationship between the tensors lsij and 19 in convected

coordinates is [31]

p
lsmn = _0 ,m

(o]

(III.39)

O

If these stresses are expressed in terms of their physical components
(similar to equations (D.9) and (D.12) in Appendix D) then (III.39) with

m=n=1 becomes

—22

(III.40)

11 11 ‘

i1 8

Substitution of (III.36), (III.37), and (II.49) into (IIL.40) gives
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1 1+ 2 1522
= _— e . II1.41
11 T T11 ( )

.1+ 2 611
Similarly
1
1+2°7¢
1522 = -——l—ll— T22 . (I11.42)
1L+ 2 €22

In view of equations (III.36) to (III.42), then

~ 1 ~ 1
A = J1+2 €11 , B = J1+27¢, (II1.43)

1 1
s - A Ty = 3 T2) o g (Typ =7 Tay) (TTT.44)
= — N = — s .
1 oB 5 2 oA p
o = ¢ 1 yL/4 (I11.45)
s, + 5,2
1 2
and
— 2 2 Ee
O = Ty T Ti1T9 + 1,, s c = F (I11.46)

III.3.2. Work hardening materials

For materials which obey the work hardening law (II.42) the trans-
formation coefficients in (III.29) are

3

C - A E .52
Ci111 = B - (F' +8,7)
- 32 & -2
- b _5 1
€222 = & o (F' +8;7) (III.47)
C. = C, = AB -£- (vF' - §.5.)
1122 = %2211 = 1°2
where
- a = (T3 - % To2) g /= (Typ - % Ty5)
s, = = VE/o , S. = = VE/o
1 B — 2 A —
g ag
(I1I.48)
and
Q = (l—\)z)F' + (8. 2 L 2v8.3. + S 2) . (II1I.49)
1 1°2 7 9 :

T2




III.4. The Expressdion for Virtual Work

The incremental. equations of equilibrium between configurations
1 and 2 for the shell can be written in the form of an expression of
virtual work. The general form of the expression of virtual work in curvi-
linear coordinates is given in equation (A.13) in Appendix A. The incre-
mental expression of virtual work for axisymmetrically deformed shells of
revolution was derived from (A.13) in Appendix ' F. If the shell is thin so
that '%— << 1, and £« 1 - then the equations (A.13), (F.16), (F.18),

s RG

and (F.21) reduce to the following form in terms of physical components:

I SV 53 da | SIVITE} de = [ (1, 8n__ + Tgefngg +

T \Y)
+ s 0e__ + sg40€0) AV _ (I1II.50)

where

{v}T = <uxy> s (II1.51)

G = <3 3 > (II1.52)

s “n > *

and

~.T N~ o e

{F}" = <& g # > . (111.53)

the tildas over the variables in (II¥I.52) and (III.53) indicate that
these quantities are specified. Substitution of. (III.29) into (III.50)

and integration over the thickness of the shell leads to

[ st EY aa + [ svIT{E} de =
aT (o4

= [ (a{n}T{lﬁ} + 6{e}T[p]{e} da (III.54)
a .

where the nonlinear part of strain vector is

1

T 1
{n}- = < N Mg K~ Ko > (II1.55)

13




and

n

(IT1.56)

-

< | ac
“h/2

| Top

P

ss
h/2
z 4t

“h/2

| “o0 |

and the rigidity matrix is

[p] =

4x4

The components

2x2

[D,,]
2x2
and
[D,,1]
2%2

o]

£

D b

11 12
Dy Dy
[D] are
h/2

J [C(s,2)] dt
“h/2

H

h/2
[D,,] = [ [C(s,0)1% dt
9%2 -h/2
h/2

/ [T(s,0) 122 dt

-h/2
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CHAPTER IV: APPLICATION OF THE FINITE ELEMENT YETHOD FOR THE

ANALYSIS OF AXISYMMETRIC SHELLS OF REVOLUTION

The application of finite element method to structural problems has
been discussed in [6, 136-138]. The direct stiffness procedure of the dis-
placement formulation of finite element method which has been widely used
for both linear and nonlinear analysis of structures has been explained and
the various requirements on the assumed displacement fields has been dis-
cussed in several references, e.g. [6,15,25,34,136,138,139]. The incre-
mental expression of virtual work given by equation (I.27) can be solved
for the displacements by the displacement formulation of the finite element
method. In this Chapter, first a nonlinear incremental procedure of solv-
ing (I.27) using the displacement approach of the finite element method is
discussed and the basic steps are explained. Then, using the direct stiff-
ness technique, the linear part of the incremental procedure is applied for

the nonlinear analysis of elastic-plastic shells of revolution.

IV.1l, Displacement Formulation for a NonsLinear Incremental Procedure

The incremental expression of virtual work in configuration 2 i1s
given by Equation (I.27) as
f tiGui da + [ pofiGui dv = [ (Tijsnij + Sijaeij) dv o
a v v
(I.27)

Assume that the material space of the body in configuration 1 is composed
of a set of simply comnected subregions called finite elements. Then

Equation (I.27) can be thought of as the sum of similar expressions for

5




the elements. Let the displacement increments., ui(zm), of the points
in the elements be expressed in terms of the displacement increments,
rj(zn); of certain points or. sets of points of the elements called the
nodes (which are usually at the interfaces of the elements) by some

interpolation functions M,.,(z ) as
ijt m
ui(zm) - = Mij (zm)rj (zn) . (IV.l)

The displacements ui(zm) are contilnuous in the element and vanish
beyond the boundaries of the element. Thus the element: is the support
for the functions ui(zm). The combination of all such displacements
for all the elements comprise the total incremental displacement
field of the whole body. The element displacement and geometry
representation should be such that the rigid body motion of the
elements and the compatibility requirements at the element boundaries
be satisfied. In addition, for the uniform convergence of solutionms,
the displacements. must be such that uniform straining modes of the.
elements exist.

In the same way the tractions and body forces are expressed

in terms of the magnitude. of tractions and body forces at the nodes

by some interpolation. functions such as
t(z) = M_(z) T (2) (1V.2)

£
fi(zm) = Mij(zm) Fj(zn) (IV.3)

6




For materials where the relationship between Sij and € in the

i3

”»
elements can be expressed by

8 (1v.4)

i3 = Cijxe Sk >

1
e ’ (1v.5)

the substitution of (IV.1l) - (IV.5) into (I.27) results in the following

incremental force-displacement relationship:

2) (3

- @) (1) (
Re = Kn tKq ) *n * Kns s T Xinsu TntsTu (LV.6)
where
= [® M. T da+[p "M M, F dv (1V.7)
Rk . dm ik m v Po "im Mik *m ’ *
() _ 1
Kkn T4 £ Cijrt(Mik,j + Mjk,i)(Mrn,t + Mtn,r) dv ’ (1v.8)
(1) 1
K = 3 {r 'rij(Mmk,i + an,j + an’i Mmk’j) dv . (1Iv.9)
(2 _ 1
Kins = % ;[ Ciseel M5 ¥ Myx,1) Yoe,r Mon,t
+ (Mrs,t + Mts,r)(Mmk,i Mmp,j + Mﬁk,j an,i)] dv ’
(Iv.10)
and

%
More complicated constitutive. relations can be assumed. The stated

relationship 1: sufficiently general for our purpose here,

7




(3)

1
nsu Z_J Cijrt M:ms,r M:mu,t

M

mk,i an,j + Mmk,j an,i) dv :

(Iv.11)
The stiffness matrix Kﬁ;) is due to the linear part of sijdeij in

(I.27). The stiffness matrix Kéi), called the tangent or initial

stress stiffness matrix, is due to the T*jnij term in (1.27), and the
. (2) (3) . .
matrices Kkns and Kknsu are due to the nonlinear terms in Sijasij'

It can be seen that the incremental force-displacement relationship in
(IV.6) consists of a linear part and an underlined nonlinear part. In
general, chis relationship must be solved by successive approximations,
e.g., iteration. The linear part of (IV.7) can be used as a first
approximation in a direct incremental procedure.

When the nodal displacement increments are found from (IV.6) they
are added to the total nodal displacements at configuration 1 to give the

total nodal displacements at configuration 2
2r(z) = Tr.(z) +r.(z) : (1v.12)
j'n j' n j'n

Substitution of rj(zn) in (IV.1) and the result in (IV.5) and (IV.4)
gives the increments of stresses Sij' Then by (I.15), (I.46), and

(I.45) the Cauchy stress components in configuration 2 .are found.

8




IV.2. Discretization .of Shell Geometry

The shell is subdivided into a number of doubly curved ring elements
and a cap element. Khojasteh Bakht [140] has found that doubly curved
elements for whiclk the positions, slopes, and curvatures of the shell
meridian match at the nodes and which are described in local Cartesian
coordinate systems give very good results for small deflection analysis
of axisymmetric shells of revolution. Also, he studied a degenerate form
of this element which has all of the above properties 2xcept that meridian
curvatures do not match at the nodes. He designates these two types of
elements as FDR(2) and FDR(1l), respectively. He found that for a hemi-
spherical shell under internal pressure the results with nine FDR(1)
elements is the same as the exact solution. In the displacement method
of finite element procedure the curvatures at the nodes of adjacent elements
do not remain the same. In the present incremental method of large deflec-
tion analysis,the nodal curvatures are used in finding the varying geometry
of the elements. Therefore, in order not to introduce additional constraint
on the deformation of elements (by matching the curvatures) FDR(1l) elements
are used in this dissertation.

The meridional profile of the middle surface of the curved element
FDR(1l) for an arbitrary shell of revolution is shown in Figure IV.1l. The
local Cartesian coordinate system for this element is denoted by & and n.*
£ 1is a normalized coordinate with value 0 at i and 1 at 3j. The
angles are positive as shown in the figure and the following relation

applies

% ’
n as a local Cartesian coordinate for an element is uded only in this

Chapter. It should not be confused with nij, the nonlinear part of

Lagrangian strain.
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FIG.I™-1 DOUBLY CURVED ELEMENT

FIG. I -2 CAP ELEMENT
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d+Yv+B = u/2 .

In [140] the meridian of the FDR(1) element is represented by '

n = &(@1-&) (al+a2£)

where

[
Il

1 tan Bi

'Y
-
1

- (tan Bi + tan Bj) .

The parameters in (IV.15) and (IV.16) are determined from

Ar = rj -
Az = z, - z,
k| i

ps = (B2 + T221Y?

. _ Ar _ Az
siny = As s cos ¥ = As
sin Bn = cos ¢n cos P ~ sin ¢n sin ¥

n=1,j

cos Bn = gin ¢n cos Y + cos ¢n sin Y .

(Iv.13)

(Iv.14)

(Iv.15)

(Iv.16)

(Iv.17)

The following relations which can be derived from the geometry of

the substitute element will be used in some of the equations in the sub-

sequent presentation.
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g

ol
|

cos ¢

sin ¢

I - tam B

a? 2

_2 = - % is the cord length
dg R_ cos 8

r, + 2E(sin ¥ + % cos )

%

cos B

"
o cos36

L

cos B(tan B cos ¥ + sin ¥)

cos B(cos ¥ - tan B sin ¥)

82
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IV.3. Displacement Pattern

Following the work in [140] the displacements of the middle sur-
face of the elements will be chosen to be uy and u, (see Figure IV.1l).

These displacements are expanded in terms of the generalized displacement

coefficients Q. For a ring element these expansions are

and (Iv.19)

, 2 3

where 0 < & < 1. These displacement expansions satisfy the requirements
of rigid body motion and compatibility for the elements of axisymmetri-
cally loaded shells of revolution. It can be shown that they do not give
all of the constant strains required for uniform convergence of the solu-
tion unless angle B is zero.* However, when the length of the meridian
of the curved elements is chosen to be small and approximately equal to
the cord lengths then the constant strain requirement will be satisfied
sufficiently well.

The transformation between the displacements u

u, and u, Ww

l’
is as follows
u cos B sin B u

= . (1v.20)

w - sin B cos B u

“This point was brought to the author's attention by Mr. P. Larsen,
Graduate Student in the Division of Structural Engineering and Structural

Mechanics, University of California, Berkeley, California.
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At the top of a cap element for the axisymmetrically deformed shell
of revolution the displacement u and the rotation ®w vanish (see Figure

IV.2). Hence from (IV.19), (IV.13), and (IV.20)

o
— A 3 _ _ ,
o, = zos sin U cos Y a3 . (Iv.21)

Also, when ®w =0 then sin ® =0 and from (III.7) it can be seen that

¥ = 0. Substitution of (IV.19) and (IV.20) into (III.5) gives

8, = tan ¥ a, = ai (1Iv.22)

2

Hence the displacement pattern for the cap element is

- 1 '
u, = cos Y a3 + o, g
(1v.23)

1

3
3 2

sin Y o

[~
Il

2
1
+ tan Bl a! &£+ as E + o

4 6

In the regions of the shell where the rate of change of meridional vari-
ables like meridional curvature and in plane force is high many elements
must be used so that the linear expansion for u; can give reasonably

accurate results.
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IV.4. Strain-Displacement Relations

For the present numerical application the terms of the type egXs
and esx have been neglected in the curvature terms (III.24). Then the

strain vector is

{e} = {e} + {n} (IV.24)
where
T
{e}” = < e ey Kso Keo > (Iv.25)
T _ 1 1
{n}> = <n_ngx kg > (III.55)
e e
o s o c 6
Ky = x,s +-§— , Kg —9%—9-x +-§- (Iv.26)
s ]
1. X 1 sin ¢ 2
Ke™ = 2R s Koo =~ 7o X . (Iv.27)

Substitution of (IV.20) in (III.3) (I11.5) gives

du du

e _ cos2 B ( + 3—2')

s = 2 qg T tan P g >

ey = % (sin ¥ u + cos ¥ u,) , (1V.28)
du du

X - S Cmbg g
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IV.5. Element Stiffness Matrices

Four stiffness matrices were derived for the incremental force-

displacement relation (IV.6). For a linear incremental procedure only

(o) ®

K and K are required. These two matrices will be derived in

this section for axisymmetric shells of revolution.

IV.5.1. Stiffness matrix k<°

It was demonstrated in Section IV.1l. that in the general case

(o)

is derived from the linear part of s

(o)

the stiffness matrix K ..0¢e,
ij 43

in (I.27). For the axisymmetric shells of revolution k is associated
with the linear part of G{E}T[D]{e} in (III.54). The relationship be-
tween the linear part of strain, {e}, and the generalized coordinates

{0 } can be found by substitution of (IV.19), (IV.28), and (IV.26) into

(Iv.25). 1In matrix notation

{e} = [B(E)1{a} (1v.29)

4x], 4x4  4x1
where matrix [B(E)] dis given in Appendix G for both ring and cap elements.
Therefore, when (III1.54) is written for an element of the shell and in terms

of coordinates &-n (see Figure IV.1l), then

1
k1 = [ 23@©1 D@ 1BE @ @nHY2 g . (1v.30)
6%6 °
The components of the rigidity matrix [D(§)] are obtained by the

integrations in (III.61l) - (III.63). These integrals are evaluated numer-
ically. 1In order to follow the history of deformation of the shell in the
elastic-plastic analysis sufficiently large number of points should be con-

sidered in the thickness of the shell and, therefore, simple methods of
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numerical .integration can be used. It has been found ia [140,141] that
rectangular rule of numerical integration is satisfactory. For this pro-
cedure the shell is divided into a number of layers along its thicknéss
(see Figure IV.3). The material property matrices [C] are assumed to

be constant in the thickness of each layer. Then

(D, &)1 = [5;(®)] ,
2%2 2%2
[D,E)] = [D,,®] = [G,E] -5h@E D@ , (1v.31)
2%2 2%2 2%X2 2X2
_ — 1.2 —_
[0,,E] = [0,®] - h@ B,@H 7@ B,E1
2%2 2X2 2%2 2%2
where
— n — —
[D &)1 = kz_l [CE,h) 1y - by ;) .
2%2 2%2
B.©] = £ ¥ ©EiIm? -n 2 (1V.32)
2 2 4 A N T ] ’ y
2%X2 2%X2
B8] - £ § ©Einm’-n %
3 3 .4 A R T ’
2%2 2X2
o= L1@m - - h)
K 7 (y -y

If the layers have equal thickness, then
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FIG. I™E-3

SHELL THICKNESS
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n

] [CeEh]

5,1 = K&

n

2%2 k=l oo
- @ ! oo 1
[0,()] = —>> ] [CEIK=-3) (1v.33)
2x2 n k=1 2%2
— e 8o 2 1
[D,(E)] = 3 L CEBIIE -k +3)
n k=1

2x2 2x2

The value of the material property matrix [E(E,;)] along the
meridian of the element can be expressed in terms of its magnitude at the
nodes by some suitable interpolation function. For sufficiently small

elements linear interpolation car be ased. Thus

[C(E,0)1 = (1-E)[C(0,2)] + E[C(1,2)] . (IV.34)
2%2 2X2 2%2

In the same manner the variation of the shell thickness can be written as

h(g) = (1-8) h, + £ hj . (Iv.35)

The integral in (IV.30) can be evaluated numerically. Gauss' integration

formula is used for this purpose [142].

IV.5.2. Stiffness matrix k(l)

The initial stress stiffness matrix k(l) is obtained from the
term G{n}T{N} in (III.54). The components of the nonlinear strain vec-—

tor {n(&)} are given in (III.22) and (IV.27). Vector {n(£)} can be

written as

[}

in@1} [F(&)] (&} (IV.36)
4x1 4x4 4x1
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where

- 2 2 2
e} = < 22<-— 0 )2<— %_(— > , (IV.
1x4
and
1 0 0 0 ]
0 0 0 0
[F(E)] = 1 (Iv.
4x4 0 0 = 0
S .
0 0 0 - sin ¢
. r -

Also let the stress resultants in configuration 1 be expressed by

vy = e (o (1.
4x1 4x4 4X1
where
1 T 1 1
ey = < N N, lMS lme > , (1v.
1x4
[ 1y 0 0 0o
s
0 lNe 0 0
[1N(£)] = > (Iv.
4x4 0 0 lMs 0
i 0 0 0 lMe_—
and
mf = <1 1 1 1> ) (1v.
1x4
The variation of §{n(&)} is
sHET = < XSx 0 x8x  Xx8x > . (IV.

1x4
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This variation can be written as

sE = xE®]1 {x@® (IV.44)
4x1 4x4 4x4
where
S = § < x@®& 0 xE® xE® > . (IV.45)
1x4
X&) © 0 0
0 0 0 0
X(E)] = , (IV.46)

0 0 x(& 0

0 0 0 X&)

Substitution of (IV.36), (IV.39) and (IV.44) into s{n} {n} gives

stn® 1T (@) = six@®1T (FE1 '@ XE® . (@v.47)
1x4 4X1 1x4 4x4 4x4 4x1

Also substitution of .(IV.19) into (IV.28)3 gives

x@©} = [6E)] {a} (IV.48)
4x1 4x4 4x]1

where Matrix [G(E)] dis given in Appendix G for both ring and cap elements.

In view of (IV.48), expression (IV.47) becomes

stn® 1T @ = s}t [16®)1T (F @1 '@ [6E)] {0} .
1x4 4X1 1x4  4x4 hxh  hxh  hx4  4X1  {IV.49)

Substitution of (IV.49) into (III.54) results in the following expression

for the initial stress stiffness matrix of an element

2)1/2

1
k1 = [ ere@I1TFE@IMNEe®] £@© @nhHY? e
(o}

6%6 (Iv.50)
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IV.6. The Incremental Force-Displacement Relations

The displacement vector for an element is chosen to be

@Y = <u @ u,E xE© > : (1v.51)
1x3

Substitution of (IV.19) and (IV.28) in (IV.51) results in

vyt = [¢&)1Hol} (Iv.52)
3x1 3x6  6x1

where [¢(E)] is given in Appendix G. Substitution of (IV.52) in
(I11.54) results in the following expression for the generalized force

of the element.

1
o = f 2@ H@ @ amHY? a (1v.53)
(o]

6X1
where, for a linear interpolation, the surface force vector {p(£)}

can be written as

e = Q-0+ e} . (IV.54)
3x1 3x1 3x1
The linear incremental forre-displacement relations for an

element in coordinate system {a} is

{Qa} = [ka] {a} (IV.55)
6%x1 6X6 6x1
where
_ (o) €8]
[ka] = [ka 1+ [ka 1 (Iv.56)
6%6 6X6 6%6

At the nodes of the element, equation (IV.52) has the form

{¢} = 1a] {a} (1v.57)
6x1 6%6 6X1
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where {q} is the vector of nodal displacements in &-N coordinate

system

{q} = < (A Vj > . (Iv.58)
1x6

The coefficients « are obtained in terms of {q} by inversion of
(Iv.57)
{} = (a1 {q} (Iv.59)
6x1 66 6X1
where matrix [A—l] is given in Appendix G. The relationship between
the components of nodal point displacement vector in &-n coordinates,
{q}, and the corresponding components in the surface coordinates, {r}

is given by

{q¢} = I[T] {z} ) (IV.60)
6x1 6x6 6X1

wvhere

T
= < : >
{r} Tyt T
1%6
(Iv.61)

T
{ri} = <up WXy >
1x3

The matrix [T] is given in Appendix G. Transformation of (IV.55) into

surface coordinates results in the following incremental force-displace-

ment relation

{Q} = [k]1 {x} (IV.62)
6X1 6X6 6X1

vhere
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@ = ' ht ) (1V.63)
6x1 66  6x6  6x1
{r} = (11" [a] {o} , (1V.64)
6x1 6x6  6x6 6X1

and
i = T a1’ k] a7 I (17.65)
6x%6 6X6 6X6 66  6X6 6X6

Considering the equilibrium and compatibility requirements at the nodal
circles, the relations (IV.62) of the elements are combined using the
direct stiffness method and the incremental force-displacement rela-

tions for the whole shell is obtained.

{rR} = [x1 {r} (IV.66)
Nx1 NxN Nx1

where N is the number of elements of the shell; {r}, and {R} are
the vectors of all incremental nodal displacements and generalized
forces; and ([K] is the total incremental stiffness matrix of the

shell.
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IV.7. The Procedure .of .Incremental Analysis

The procedure for the analysis of large deflections of =zlastic-
plastic shells of revolution using the finite element scheme developed
in this chapter is outlined in this section. The ineremental solution
starts from a known initial configuration where the shell is assumed to
be free of stress. Then load increments are added successively. For
each one corresponding iisplacement increments are obtained, and the
geometry and the material properties of the shell are renewed accordingly
to be used as the initial wvalues for the next increment. The details of
the procedure for a typical increment of load for strain hardening
materials is as follows. The displacement increments are found from
(IV.66) and the increments of strain for each layer in the shell thick-
ness are obtained from (IV.29), (IV.48), (IIL.14), and (II1I1.15). The
total strains are obtained from (B.5) which for the physical components

of strains in axisymmetric shells of revolution becomes

2 1 1
11 © 811 + (1L + 27 ¢

m
|

1) €11 o

(IV.67)

2 1 1
e22 €59 + (1 + 27¢

22) €55 -

From (III.29) the Piola stress increments are calculated and are used
in (I.15) to find the total Piola stresses which are then transformed

to Cauchy stresses by

21 B l+2€ll Zs
- >
11 1+2£-:22 11
(IV.68)
21 _ l+2€22 zs
22 l+2€ll 22
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The loading criterion (II.23) is checked and .for loading the plastic
increments of strain are used to find the increment in equivalent
plastic strain (II.41) which is used to find the total equivalent

plastic strain by
20 = B+ : (1V.69)

This strain is utilized in the uniaxial stress-—strain curve to find

the tangent modulus and the equivalent stress o (see Figure II.3).

The value of 0 is used to modify the new state of stress. The tangent
modulus together with the new state of stress and strain are used in
(II1.30) and (III.31) to find the new material properties. The new
geometry of the shell is obtained from (IV.12) and (III.7). ©Now the
next increment of load can be added for which the above procedure is
repeated.

The procedure explained here is essentially a forward integration
method where the magnitude of the variables at the beginning of each
increment is used for the integration during the increment. This

.method can be improved by various integration techniques, see, e.g.,
f143]. It was found in [141] that a modified Euler method gives im-
proved results fof the case of infinitesimal deflections of elastic-
plastic circular plates. This modification can also be used in the

present problem.
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CHAPTER V: NUMERICAL EXAMPLES

In this chapter. the linear incremental procedure developed in
Chapter IV is applied to the large deflection elastic-plastic analysis
of some axisymmetrically deformed shells of revolution. The purpose is
to study the accuracy and convergence of the direct linear incremental
method and, therefore, no auxiliary numerical procedures have been intro-
duced to improve the accuracy of the results. A complete study of the
nonlinear incremental procedure of Chapter IV requires either an itera-
tion scheme or some improved integration techniques like modified Euletr
or Runge-Kutta method [143].

A brief description of the computer program is given and then

several examples in the elastic and elastic-plastic range are solved.

V.l. Outline of Computer Program

A computer prograr was developed and used for the nonlinear elastic-
plastic analysis of axisymmetrically loaded and supported shells of revo-
lution., The linear incremental method of Chapter IV is used.

The program is in Fortran IV language and was used on CDC 6400
computer. The. capacity of the program is limited to maintain an in-core
analysis. Examples with up te 80 elements each with 20 layers can be
treated., The capacity can be increased by means of out-of-core storage
facilities if required.

A concise outline of the computer- program is given in Fig. V.1.
This chart, together with the explanatione in Section IV.7, is enough
to acquaint the reader with the basic steps and some details of the pro-
gram, The listing and the instructions for using the program will be

published in another report.
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No

Read Data
1- number of structures to be analyzed
2- discretization data
3- material properties
4~ boundary conditions
5~ element geometry

!

Construct Geometrical Parameters and

Matrices: [B], [G], [A-l][T], [F],

and [¢].
1

Read Applied Load Increments in Current
Geometry and Convert to Consistent Nodal

Loads.
!

Construct Matrix [D], Element Stiffnese
Matrix [k] = [k(o)] + [k(l)], and set up
System Stiffness Matrix [K].

1

Impose Boundary Conditions and Solve
Equations for Displacement Increments;
Find Total Displacements.

1
Compute:
1- different. kinds of stresses
2- stress resultants
3- new material properties

!

Renew the Geometry:
1- compute new geometrical parameters
2- compute total displacements in
initial configuration coordinates

i No

Are All Load Increments Applied?

Yes
\

Are All Structures Analyzed?

I Yes

Stop

Fig., V.1 Concise Outline of Computer Program

98



V.2, Elastic Solutions

In this section the results of the linear incremental: finite element
method are compared with some other existing theoretical solutions for
elastic circular plates and shaliow spherical shells The purpese is to
check the accuracy and convergence of the present method in the elastic

range.

V.2.1l. Circular Plates

The incremental method is applied to a clamped circular elastic
plate and the results of normal central deflection, and membrane and
bending stresses are compared with Way's power series expansion solution
[121] (see Figures V.2, and V.3). Since the plots are dimensionless, the
results are applicable to any clamped. circular plate with Poisson's ratio
of 0.3.

As the plots in Figures V.2, and V.3 indicate, the agreement
between the present results and Way's solution is good for both displace-
ments and stresses, There is practically no difference between the
results obtained for the load increments (a/h)A(Ap/E) = 0.54 and half
this value. In this example the cord length of an elemegt was chosen
as 0.055a. The compuﬁer time used per increment of load per element

is 0.65 seconds.
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V.2.2. Shallow Shells

Nonlinear elastic solutions.are given for two clamped shallow
spherical shells with different parameters A. The geometric parameter
A for shallow shwlls is. defined by X = [‘/12(1-\)2)(.az/hR)]]'/2 where h
is the thickness of the shell, and R and 2z are shown in Figure V.4,
The values of A for the present examples are. low enough to assure

axisymmetric deflections.,

A, Comparison with Kornishin's Solution

In this example the results of. the linear incremental method are
compared with Kornishin's power.serdes. solution [144] for a shallow
spherical cap with A = 2,22 (see Figure V,4). The dimensionless
results in Figure V.4 apply to any shallow spherical cap as long as
A = 2,22, Poisson's ratio v = 0.3, and the shell is thin. Values of
0.75 and 0.375 are used for the dimensionless load increments. The load-
deflection curve in Figure V.4 indicates that the results by the smaller
load increments are closer to Kornishin's curve for (wolh) < 2. Beyond
that the results of the larger load increments are closer, This can be
attributed to the fact that since in a linear incremental procedure the
increments are taken along the slope to the load-deflection curve and
the true slope is more closely approximated by smaller load increments,
then in the present example near (wo/h) = 1.5 where the tangent is
almost horizontal the smaller load increments overestimate the deflec-
tion. This problem can be overcome if instead of the present linear
incremental procedure the nonlinear incremental formulation of Section

IV.1 is used. It can also be treated by replacing the present linear
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incremental procedure which is actually Euler's forward integration method
by the modified Euler or. Runge-Kutta method [143].

Eighteen elements were used.in.the. present example with finer
elements near the edge of the shell. The computer time per load increment

per element was 0.68 seconds.

B. Comparison with Kaplan and Fung's Results

The finite element solution is compared with Kaplan and Fung's
experimental results and their theoretical perturbation solution for a
shallow spherical cap with A = 4,01 [97] (see Figure V.5). The finite
element method is applied to beoth the initially perfect and imperfect
shallow spherical cap. The geometrical imperfections measured in [97]
were used. The result of the perfect shell agrees well with the theo-
retical solution in [97] and that of the imperfeet shell is closer to
the experimental observation but does not close the gap between the
theoretical and experimental results.

fighteen elements were used with finer elements at the boundary
of the shell. The computer time per load increment per element was 0.68

seconds.,

V.3. Elastic-Plastic Solution

The- elastic-plastic behavior of a torispherical shell under in-
ternal pressure is studied. The results of nonlinear elastic-plastic
analysis are reported and compared with those of nonlinear elastic and

linear elastic~plastic analysis.
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The geometrical dimensions of the shell are (see Figure V.6):

D = 100 inm. diameter of head skirt

R =D radius of sphere

r = 0.2D meridional radius of torus
h = 0.0087D shell thickness, uniform

The material of the shell is assumed te be elastiec-perfectly plastic with
yield stress o_ = 30 X 103 psi; and Young's modulus and Poisson's ratio
E = 30 x 106 psi, Vv = 0.30, respectively.

The shell is divided into 36 elements and the thickness of each
element is divided into 1€ equal layers. The convergence of the nonlinear
analysis in the inelastic range is studied by using three different magni-
tudes for the load increments beyond the pressure of 390 psi (see Figure
V.6). Below this pressure the load-deflection curve is almost linear and
convergence study was considered te be unnecessary. The three load incre-
ments are 7.5, 15, and 30 psi. The results in Figure V.6 indicate that
the convergence increases as the magnitude of load increments decreases
and that the rate of convergence is quite rapid. The results in Figures
V.7 to V.1C are for Ap = 15 psi. The average computer time used per
load increment for each ~lement is 0.765 seconds.

The comparison of the linear and nenlinear elastie-plastic load
deflectior curves in Figure V.6 indicates that for the same value of
the apex nermal deflection, LA the nonlineai analysis predicts higher
load carrying capacity for the shell. The difference varies from zero
tc about 11% for displacements up to 0.4 inches. If deflection 1s used
as the controlling factor in defining the ultimate leoad carrying capacity

of the shell the above difference can be significant.
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The variation of the normal displacement w, meridional bending
moment MS> and the circumferential in-plane force Ne along the
meridional curve of the shell are shown in Figures V.7,.V.8, and V.9,

It can be seen in Figure V.7 that. the normal displacement of the non-
linear analysis is appreciably less than that of the linear analysis all
along the shell. The redistribution of stresses as a result of plastic
deformatior can be seen in Figures V.8 and V.9, The comparisons of
linear and nonlinear elastic-plastic results in Figures- V.8 indicates
that for the same value of internal pressure. the bending moments due to
the nonlinear solution are appreciably less than the linear solution.
The difference in the in-plane circumferential force for the two solu-
tions can be seen in Figure V.9.

The elastic-plastic boundaries in the thickness of the shell for
both linear and. nonlinear analyses are showr in Figure V.10. In both
solutions the first location in the shell which reaches the state of
plasticity is the inner face of the toroidal part near the sphere edge.
The plasticity for the linear solution sets in at p = 2506 psi and for
nonlinear solution at a pressure higher than thdis:- and less than p = 280
psi. Always the plastic regions for the linear solution propagate
faster. The pattern of propagation of plastic regions is almost the
same for both solutions. The plastic regions for the linear solution in
the spherical part léan more towards the sphere-torus junction, whereas
for the nonlinear solution they propagate faster towards the apex of

the shell.
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CHAPTER VI: SUMMARY AND CONCLUSIONS

An incremental variational method has been developed for the
analysis of large deformations and/oi displacements in continuum mechanics,
Several forms of the incremental expressions of virtual work have been
derived and one of them which utilizes a moving reference configuration
has been used in the developments., It is shown that the incremental
variational formulation leads to correct equations of equilibrium and
boundary conditions.

General incremental nonlinear constitutive equations have been
derived for elastic material; taking into consideration the invariance
requirements in continuum mechanics and the laws of thermodynamics.
Correspondingly, an incremental theory of plasticity suitable for initi-
ally isotropic materials and for the case of small deformations but large
rotations has been developed by specializing and adding some features to
the general theory in [50]. Using the principle of objectivity and the
property of isotropy Lt is shown that the elastlc-plastic constitutive
equations remain invariant in Cartesian and initially orthogonal convected
curvilinear coordinate if the Cartesian tensors are replaced by the phys-
ical components of their corresponding curvilinear tensors. This form
invariance is very useful from the point of view of practical consider-
ations since it makes it possible to bypass the complicated curvilinear
tensorial form of the constitutive equations in solving problems.

The incremental method has been formulaced in the finite element
form and the various stiffness matr;ces in the resulting incremental
force-displacement relations are demonstrated. It is shown ﬁhat the

force-displacement relation for each increment consists of a linear and
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a nonlinear part. The linear part which includes. an initial stress stiff-
ness matrix provides a first order approximation of the incremental rela-
tions.

The developed method is quite general and can be used for the
analysis of largé deformations of mansy structural problems, In this
dissertation it has been specialized for the solution of large deflections
of elastic-plastic thin shells of revolution with axisymmetric loading
and support conditions. The displacement procedure of the finite element
and the first order part of the nonlinear incremental equations have been
used for the solution. A convenient matrix: decomposition method has been
shown for the formulation of the tangent stiffness matrix., This method
can. be easily applied when more nonlinear terms of the strain-displacement
relations are considered.

A computer program has been written for the large deflection
analysis of elastic-plastic shells of revolution. The accuracy and con-
vergence of the linear incremental procedure has been demonstrated on
some examples of circular plates, shallow shells, and shells of revolu-
tion with arbitrary meridian. It has been found that the convergence
is satisfactory when the stiffness matrix of the structure is not very
close to zero. For problems where the stiffness matrix becomes almost
singular it is advisable to augment the procedure with an iterative
scheme or an improved integration procedure. When such provisions are
made the method can be easily applied for the buckling and post buckling

analysis of elastic-plastic shells of revolution.
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APPENDIX A

A.l The Principle of Virtual Work in Curvilinear Coordinates

Cauchy's relation between the traction and the Piola symmetric
stress tensor in configuration 2 can be written as [35] (see Figure

A.1)

2,r _ ik, .r r
v o= s (8 +u]y) ny (A.1)

where 2tr are the contravariant components of traction vector which

acts in configuration 2 but which is measured per unit of area of con-
figuration 1, 2sik are the contravariant components of the Piola
Symmetric stress tensor measured per unit of area in configuration 1,
uw*  are the contravariant components of the displacement increment
vector from configuration 1 to 2, and the vertical bar (|) denotes
covariant differentistion.
The expression for the virtual work in configuration 2 can be

written as

W= ,[ 2traurda + )[.pozerurdv (A.2)

a v

Substitution of equation (A.l) into (A.2) and the application of
Gauss' transformation for surface integrals into volume integrals gives
= ([ IR(gT 4 oF, )], 4 o 2£7} +
v, Jf oS 6k + 1 k4 Py Su_dv
v (a.3)

ik, .r r
Jr oS (Sk +u lk)(Gur)Ii dv
v
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The integrand of the First integral of equation (A.3) consists of

the equilibrium equations and is identically equal to zero; therefore,

W= ‘[;sik(di + ur|k)(<5ur)|:.L av . (A L)

v
It can be written that

(5u ) 8(6ur) <
Su .= —- T°_. (6u)
T Il N g ri s

or,
(6w )]y = 8 )

This is due to the fact that the variation is applied in configuration 2

and therefore the variation of the Christoffel symbol grsri in con-

figuration 1 is equal to zero. The expression for virtual work becomes

_ ik ,.r r
W -f oS (8 +u |k) G(urli)dv (A.5)

v

ik 13

Due to symmetry of S and the fact that g.. =g = 0 , then

2 1J[r }r

ik r _ ik r
2% U lk‘surli“zs oy

ik
2sl (grmum)li G(grn un)[k
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Therefore,

ik, .r ., r _ L ik r
o5 (& +v ) Su l; =555 (Sul, * 6“1'1: *u Ik durli
r
+ urli Su Ik) (A.6)
ik
=8 0eyy

in which €y is the covariant component of the Lagrangian strain

between configurations 1 and 2.

_1 m
€ = 3 (ukli + uilk + u Ii umlk) (4.7)

Substitution of (A.6) into (A.5) gives

_ ik
v = fzs Sey - (A.8)
v

The stress es}k can be divided into two parts

2s. = iF 4 gl (A.9)

in which Tik are in magnitude equal to the corresponding contravar-—
iants components of Cauchy stresses in configuration 1 but which are
associated with base vectors 9 s and sik are symmetric increments
of contravariant stress components of the type of symmetric Piola
stresses.

Substitution of (A.9) and (A.8) into (A.2) yields
f 2T Su_ da + jp 26" su av = j(Tik + s%)8e,. av . (A.10)

T o T ik

a v : v
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The expression for virtual work at configuration 1 can be written as

f LT 6u_da +f o 1£¥ su av = ftlkﬁe. av (A.11)
r o) T ik
a v v
in which
1
ey = 2(u 1y +uly)

is the linear part of the strain increment from configuration 1 to

configuration 2.

Let the increments of traction and body force be defined by

(a.12)

Substitution of (A.12) into (A.10) and subtraction of (A.11l) from
(A.10) results in the following incremental expression for the virtual

work in curvilinear coordinates

r r _ ik ik A.13
f‘t Surda+fpof Surdv—f (T Gnik+ s (Seik)dv ( )
a v v
in which

Mo = = |, W®].) (A.1h)
ik 2 '  m'k i

134




A.2 Proof of the Validity of the Expression of Virtual Work

In this section it is shown that the expression of virtual work
(A.13) results in correct equilibrium equations and boundary conditions.
This proof is also applicable to the Cartesian expression of virtual
work (I.27).

The equilibriur squations in configuration 1 are

ir ir
+ = .
T |i b, T 0 (A.15)

and the boundary conditions are
g% = 7, (A.16)

The application of the principle of the balance of linear momentum to
the deformeble body in configuration 2 results in the equilibrium

equations there.

fpo 21‘ av + fzt da =0 (A.17)

A a

Substitution of (A.l2)2 in the volume integral, and (A.1) and (A.9)
in the surface integral of (A.1l7) and the application of Gauss' trans-

formation results in

f (" + sik)(éi + urlk)]li + po(lfr + f)}dv =0
o

This integral holds for any arbitrary volume, therefore,

[+ ST (8g + w1 4+ o (7 + £7) = 0 o (aas)
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The boundary conditions in configuration 2 are given by equation

(A.1). sSubstitution of (A.12), (A.9) into (A.1) gives

Y e T = (74 ST (] + uT (4.19)
1

Subtraction of (A.15) from (A.18) and (A4.16) from (A.19) yields the

incremental equations of equilibrium
ik, .r r ik r ro_
[s (6k + u lk) + T u k]|i +p I = 0 (A.20)

and boundary conditions

r_ [Sik(ar ik

K k

+ urlk) + T urll'{] n, . (A.21)

1

It can be shown that by carrying out the appropriate variations for
the expression of virtual work (A.13), the equilibrium equations (A.20)
and the boundary conditions (A.21) are obtained. The variation of the
integral on the right hand side of equation (A.13) is done as follows

ik ik (1 ik m
f (t fnyy * s é‘eik)dv = fQ T §u |ium|k)dv +
5

v

1 ik
f 5 st (S(ui|k + u_kll + umli umlk)dv

v

k

Because of the symmetry ™ and slk , and the fact that Gur. . is

|1

the same as (6ur‘|i , this equation can be written as

ik ik _ ik m
f (t Gnik + s 6€ik)dv —j (7 o |i Gumlk)dv +
v v

ik
f st (6; + um[k)(é ur)li dv

v
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The volume integrals can be ché.nged into surface integrals by

means of Gauss transformation

ik ik _ ik m
f (1 8ng, + s Gsik)dv = f T u Ii fu n aa -
¥

a

I(Hkﬂhﬂkwmw+
v

ik, or T (4.22)
s (Gk +1u lk) Gur n, da -
a
ik, .x T
f [s (§k +u lk)]]i Gur av
v
Substitution of (A.22) in (A.13) yields
r ik, .r r ik r
‘[.{t - [s77(8 +u |k) + 1T u |k]ni}6ur da +
a
(a.23)
ik, .r Ty ik r r _
J( {[s (5k Ty + 1T u lk]li +po  F }Gur dv =0
v

The integrands in (A.23) must vanish identically. Therefore, the

equilibrium equations

[s*5(6] + ] ) + T F W], + ot = 0 (a.24)

and boundary conditions
r = [Slk(

t 6; + urlk) + urlk]ni (A.25)

are obtained which are identical to equations (A.20) and (A.21)

respectively.
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APPENDIX B

B.1l Superposition of Strains

Consider three configurations of a deformable body in the process
of deformation (see Figure B.1). The components of the Lagrangian

strain tensor between the initial and the second configuration are

defined by
C
1 -
Zei.=-§(ew%%-gi.> (B.1)
J 9% 9% J
This can be written as
e (g BEBE oL O ) ala®
i3 0%t 9% 13 CD o gx®  E0° a3l 53]
m n
2. 1. 9x 8% _ (B.2)
M gxt gyt

in which lsij and €m ‘are the Lagrangian strains between the
initial and first; and the second and first configurations respectively,

Defining Eij by

_ axt ax” (B.3)
T axt o ™
and substituting in (B.2) then
2c =le. +E.. (B.L)
ij ij ij
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If convected curvilinear coordinates are used then equation (B.2)

becomes

€5 = €15 * &5 (B.5)

1j ®i5 T 9z, 05, mn (3.6)
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APPENDIX C

C.l The Principle of Virtual VWork, Second alternative

-

The expression of virtual work in configuration X can be written as

— 1 - - [ - - [1oa1 -
Ipo fiGui dv+_f1:i 8( ui)da—jsiké €i av (c.1)

v a v

in wvhich the bar over the variables indicates that the initial con-
figuration is the reference. In particular lﬁi represent the com-
ponents of the displacement vector between the initial and first con-
figurations expressed in the coordinate system of the initial config-
uration. The expression of virtual work in configuration 2 can be
written as

- 2- 2--]2_ o- -_fz_z -
fpo fiGui av + 5 8( ui)da,— siksski av (c.2)

v a v

It is shown in Appendix B that

2 1
i = Fpi T By (B.k)
Also define
7 =25 _1F |
i i i
and
5.=2¢ -1
i i i
(c.3)
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in which Ei denotes the increment of surface traction in the direc-
tion of the coordinates of the initial configuration and measured per
unit area of a , and fi is the increment of body force per unit

mass in the coordinate system of the initial configuration. Since the
virtual displacements GlE and 625 (See Figure I.1) are the same as

6§ u , then

o2
|
[

6(2ﬁi) and
(c.L)
s(1g.
1

o
=1}
1]

in which ﬁi denote the components of the increment of displacement
between configurations 1, and 2 expressed in the coordinate system of
the initial configuration.

Subtraction of (C.1) from (C.2) and the substitution of (B.L), (C.3),
(C.k) and (I.36)3 in the resulting equation yields

- - - - - - - o - - 1 -
J[ Py T3 8 u, dv + J[ N [ u.da = :['( Sik S &+ Six 8 €ki)dv
v

v a

(c.5)
It was shown in chapter 1 that for hyperelastic materials
- — _JA
= b

ik T Po 1T (1.%0)

ki
and

2- D _OoA

S,y = (I.h1)
ik o) Biki

Substitution of these constitutive equations in (C.5) gives

J[ o F. 61, av + J( £, § u.da = J[’B § A av (c.6)
o 1 1 1 1 (o]

v v

o

142




vhich is an incremental expression of virtual work for elastic materials.
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C.2 The Principle of Virtual Work, Third Alternative

The virtual displacements in section C.1 were taken to be 6(23)
and 6(13) . If instead of these 6(2) is used throughout, then
another form of the expression of virtual work can be obtained. As
in section C.1 the components of u are taken in the coordinate system
of the initial configuration. The expression of virtual work in con-~
figuration 1 is

_ - 1= - = 1- - =
Wv—_[po fkdukdv+f thdea . (c.m)

v a
Substitution of

t. ="s .a——ﬁ. (c.8)

into the second integral on the right hand side of (C.T), and the

application of Gauss transformation results in

1 - 1= - - 1 - -
= 1 [ ¢
W 4[ [( 513 Zk,j)’i +p, Bl ou av+ J 553 i, S Uy av

v

M (c.9)
The statement of equilibrium requires that

1 - 1z _
( 553 Zk,j)’i +p, =0, (c.10)
Therefore,
W =fls z S u dv , or (c.11)
v ) iy i, 0 Tk OV
v

- 1 - - Jr 1- - - _ J[ 1 -
_[ P, Ty $ w av + J . § u da = J S53 %x,j 8 U s av  (c.12)
v a v
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The expression of virtual work in configuration 2 can be written

in the same way

- 24 - = f2-— - —__f2— = -
_[ Po Tk 6 u dv + Ty O w da = 513 Zk,j 8 Wi dv (C.13)

v v

o1

The integrand on the right hand side of (€.13) can be written as

2 - _ A - _ - : )
515 Py, 3 § Uy g = ( s;5 % sij)(zk,j + uk,j) § E C.14)

Substitution of (C.14) into (C.13) and then subtraction of (C.12)

from (C.13) results in

fﬁofkaﬁkd6+fiksﬁkd§=
7 A
1 - - - - -
_f o1 B3 © s * %0300, * Py € a1 (e.15)
v

Due to symmetry of ls. and s , then
1 - - _1 - -
ij uk,J § uk,l T2 sle(uk’J uk,l) ’
(c.16)
5y W 8y =5 s 6 8 L)
iJ sd ul{al 2 7ij uksJ uk>1 ?
and
- 1- -
= +
ij "k.Jj S uk,l 13(6kj uk,j)auk,i (c.17)
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Define

G N CUNE - S
i 2 71,30 g.i »1 kyJ

nij (c.18)

Il
=
~~
WF |
\l'-'.
F

5

. =%c.+z(8 .8 .+ . )
i3 7 %5 72 Y Y, Yk, T Yk,1 Tk,

in which E;j has the same form as the increment of Lagrangian
strain between configurations 1 and 2 but involves displacement
components which are in the coordinate system of the initial con-

figuration. Substitution of (¢.18), (C.1T), and (C.16) into (C.15)

gives

- - - - - — 1 —_ - -
:[.po £,6w av + J[ t, 6w da= Jr ( 55 §n.,. + 543 § Egj)dv
(c.19)
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APPENDIX D

D.l The Physical Components of Stress Tensors

The deformation of a continuum may be expressed in Cartesian,

and curvilinear coordinates by
Z, = ZA(zi) . (D.1)
and

@ = i) (D.2)

respectively (see Figures D.1, and D.2 for a two dimensional pic-
ture). In Cartesian coordinates the stress tensor T can be

expressed in terms of Cauchy (T,.) , Piola symmetric (Sij) and

AB
unsymmetric (TAi) components as follows.
. . _ 1 _ 1.
Tl T ig =TT G sy Gt Iy T & (D.3)

in which 1 1is the unit base vector, G is the convected base
vector, and J 1is the Jacobian of transformation (D.1). The con-

vected base vectors can be written as

oR 3R 0%
G. = T = == A:i 7z
~i o Bz 0Z, 9z, ~A A, (D.k)

Substitution of (D.L) into (D.3) results in
tT.=J %, .s..% =J T Z (D.5)

AB A,i "ij B,j Ax "B,k

The same relationships in curvilinear coordinates are
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_ A 5 = ij I
m=G, T G =I g s e =TT, Ak G (D.6)
3R
e (2.7)
p.4
R LD D SR R e (D.8)
sl sd .k

The physical components of sij , and TAk are defined such that
they transform to the physical components of TAB by equation (D.5).
In fact the stresses in (D.5) are the physical components. In ortho-
gonal curvilinear coordinates the physical components of TAB and XAi

>

are
1

T:B - TAB(E;(AA)a(BB))z (no sum) , (D.9)
and
(no sum) - (p.10)

Substitution of (D.9) and (D.10) into (D.8) gives

Bl e ig
T =9 g ( &(11)8(55) S ) Xg,5 =
(D.11)

e ¥ P TN
=T Voem)Ba T )
By comparison of (D.11) and (D.5) the physical components of std

and TAk are

513 7 T8(11)8(33) ™ (no sum) , (D.12)
and
Tzk = YG(pp) &(kk) phk (no sum) . (D.13)
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APPENDIX E

The Strain Displacement Equations for Axisymmetric Shells of Revolution

The Lagrange strain tensor will be subjected to Kirchoff's hypo-
thesis and and will be specialized for axisymmetric shells of
revolution. Since convected coordinates are convenient to use in
axisymmetrically deformed shells of revolution (see ITI.4.). This
type of coordinate system will be adopted throughout the derivations.
The Lagrange strain tensor Eij between two configurations of the
shell, say configuration 1 and 2 in Figure B.1l, is defined as

1
€. . —-2—(11

k
i3 u'l.+u’ [5 ui|j (E.1)

1 | +

il Jli

where u' is the displacement vector between the material points in
the shell space in configurations 1 and 2. The vector u' can be

éxpressed in terms of its shifted components on the middle surface

of the shell space in configuration 1 as

- Y Y. S Y. B
ul = u u, s utt = (u )Y u (E.2)

where the space shifters are [60]

Y _ <Y 3.y

My = Ga - x ba . (E.3)
Ly o1 gyv oA

W= S W (E.b4)

and

U= det[ug] (E.5)

in which b; are the curvatures of the middle surface at configuration 1.
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Also
u3 =10 = u3 =1 (E-6)

Substitution of (E.2) through (E.6) into (E.1) results in [60].

A A -
26@8 = ua(ullls - bxsus) + “B(uAIIa - bkau3)

) 1)
+ (uGIIB - bss u3)(u o~ b, u3) (E.7)
+ (u +b. u )u + bk u, )
3,0 vt 73,8 B A ?
— .Y A
2€3a = Hy uy,3 * (u3,a + baul) *+ (E.8)
A A
E3Wxna'*hd%)+u33“%¢x+ba“x .
and
_ 2 A
2e4 2u3’3 + (u3’3) -+ 4y %3 s (E.9)
where
u =u PA
al|p ~ "a,8 T tap " ®
(8.10)

o $

o _ o,
u llB = u,B + PGB u

In axisymmetric shells of revolution where the deformetions are
restricted to Kirchoff's hypothesis the only non-zero components of the

metric tensor of the middle surface will be
2 2
819 = 0 , 8,5 =T (E.11)

where
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(E.12)

The corresponding metrics associated with the contravariant base

vectors will be

alt = a2, 22212, (E.13)

The components of the second fundamental form are
b, =-0a¢, ,b,,=-rsing . (E.1k)

11

and the corresponding principle curvatures are

1 by 1
b, = ——= - —, and
12y Ry
b (E.15)
2 22 1
by =z TR
22 9

The Christoffel symbols which are defined as

¢ -1 ak(a

By = 2 ) (E.16)

A8y T Eay,8 T %8y,

will become

o rr
11 1 1 31
rll T T1p =0, Ty =- o2 >
. (E.17)
2 2 721 2 _
r11 =0, I112 T opr I122 0

The space shifters which are different from zero are

¢, i
ui =1+ x3 —11 s ug =1+ x3 Ei%ik . (E.18)
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In axisymmetrically deformed shells of revolution €12 and 823

will be equal to zero. Also if Kirchhoff's hypothesis is accepted
then 813 and 833 will vanish. Therefore, the only non zero com-
ponents of strain are €11 and €op o The expressions for these two

components of strain are obtained from (E.T7) after substitution of

(E.10) to (E.18) into this equation. These strains are

x3 oL’l a2
ey = 20+ gy 5 - gT W) gl e
E.1
L [(u 0ﬂu)+9‘iu]2+(u - 42 =
2 1,17 e "1 TR 3 3,1 7 R,
- x 1 ;
2e,, = 2(1 + Re)(rr,l u +rsin ¢ u3) +
(E.20)

(;,lul + sin ¢ u3)2

Consider the displacement vector u‘ . Subject to Kirchhoff's

hypothesis it can be written as (see Figure E.1l)

u'=v+x3 (A, - a)) (B.21)

~

where v is the displacement vector of the middle surface. Let w

be defined as the difference between the normal unit vectors

w=43- 235 (E.22)
hence
u' =y o+ (E.23)
= (vl + x3wl)%l + (v3 + x3m3)%

Also u' can be expressed in terms of its shifted components as
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u o= o w 23 (E.25)
Therefore,
ut o= v+ © o , and W= v 4 w . (E.25)
Similarly,
w =y + x3 W) > and up = u3 =V, + x3 Wg (E.26)

Substitution of (E.25) and (E.26) into (E.19) and (E.20) gives

3 o 2 o
- x 21 o 3 _ 1
2e,, = 2(1 + RS){(vl,l - vl) + R vyt X [(wl,l 3 wl)
o, 2
o Tl 21 o
* R w3] + = {(vl,l - = vl) RV,
s o s
3 Osq u2 2 (8-21)
+x [(wl,l - == wl) + ﬁ; u)3]}
v w 2
1, . .3 et
+ [(v3’l - ﬁ-) + X (w3,1 - R )]
s s
%3 1 3 3 1 3
2€22 =2(1 + ﬁg )[(rr,lv +rsing v°) + X (rr,l w +rsind w)l
(£.28)

+ [(r,lvl + sin ¢ v3) + x3(r,l wl + sin ¢ w3)]2

Let u, w ., W, s wn 666 . Ess denote the physical components of

v, w , and eaB respectively. Then

v
1 1 3
u=veso=, Wy o= vy _ (B.29)
w
= gy = = = w3 =
W, = Wo s 2T, W =W = 0y (E.30)
€ e
- 22 - 11
€gg = — 3 s € = 5 (E.31)
r ()
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Substitution of (E.29), (E.30), and (E.31) into (E.27), and (E.28)

gives the strain-displacement relationships in terms of the physical

components.
2 w
- i.2.X o
€ss "% T2% T2 T C[(ws,s * RS) *
e, W w
7 e (v st 7) - >((wn’s -1 (E.32)
s s s
w w w
2 L “ny L1 “no, 1 524
e [R (ws,s Rt 2 (ws,s TR )"+ 2 (o ,5 R )
S S s s
12 2% 1 2
€0 =% * 5 * C[wr(l + ee) + 3 1+ [§5'+ §-wr] (E.33)
where
e = L (u cos ¢+ w sin ¢) (E.34)
= w_
e =u, +g (E.35)
s
=8
X - RS W’S (Eo36)
w cos ¢ + w_ sin ¢
b o5 n. (E.37)
r T

It can be seen in Figure (E.2) that the components of the rotation

vector W can be written as

sin w (E.38)

€
1]

cos w -1 (E.39)

€
1]

When Kirchhoff's hypothesis prevails, it is possible to find
W, and W, in terms of the middle surface displacements u and w .
Kirchhoff's hypothesis requires that
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€33 = 0, €31 = 0. (E.L40)

Substitution of the physical components of the variables in (E.8)

and (E.9) in view of (E.LO) results in three independent equations

ws(l + es) - x(1 + wn) =0, (B.41)
1 wn ws
ms[ﬁ—-+ Wy o t g ]+ (1 + wn)(wn,s - ﬁ—) =0, (B.k42)
S S S
W r 20w +we =0 . (B.43)
n n S

from which wn , and ws can be found. The expression for ws )

and W are
n

W = X (E.4h)

w = -1 (E.45)
2 o
(1 + 2e_ +e_ + X)2
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APPENDIX F

THE EXPRESSION OF VIRTUAL WORK FOR AXISYMMETRILC .SHELLS OF REVOLUTION

Let the surface of the shell in configuration 1 be denoted by a'
and the .displacement vector between the material points in the shell space
in .configurations 1 and 2 be called E' (see Figure E.l). Then, in the
absence of body forces, the expression of virtual work (A.1l3) can be

written as

T ' v ik ik
£' t Gur da {; (T Gnik + s Geik) dv (A.13)

The surface a' consists of the outside, inside and edge surfaces of the
shell where tractions are specified. In vectorial notation the surface
integral can be written as

T~

f t » 6u' da' = f t ¢ 6u' da' + f t ¢ Su' da' + f t « Su' da' .
a - a = - a, = - a = -

o i e

(F.1)

Consjder the integral over the inside surface of che shell. For axi-

symmetric shells of revolution

t = tlgl + t3§3 s (F.2)
and since [60]

where ull is the space shifter defined in (E.3), then

_ 1.1 3
t = W t a; + t a, . (F.4)

Also, similar to (E.24), the displacement vector u' can be written as
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C o1, 3
by wa” +u.a (F.5)

The relationship between the surface differential da' on the inside
surface and the surface differential da on the middle surface of the

shell can be established by noting that

. 1.2
da' = 81 X g9 dx™ dx , (F.6)
and

da = a; X a, dxl dx2 (F.7)

Then in view of (F.3)1 and (E.5)
da' = u da (F.8)

Substitution of (F.4), (¥.5) amd (F.8) into the inside surface integral
of (F.l) results in
.~

a,

. = 1.1 3
[/t du' da’ £ (Tuug €71 ) Suy + [ue”ly ) Su,) da
1

(F.9)

where [ ]—h/2 indicates that the variables inside the bracket are
evaluated at Xq = -h/2, h being the thickness of the shell. If the
tensors in (F.9) are expressed in terms of their physieal components
then

® *
£ £t 8y dal s £ (Tue d gy Suy” + [ue 1, ) Sug’) da

1 (F.10)
where the physical components are defined as
_ i _ .3
ts = Vgll t > tn = t
(F.11)
% %
u, = Vall Uy s ug = ug .
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Substitution of .(E.26), (E.29), and (E.30) in (F.10) and a similar equa-

tion for the outside surface integral leads to

. _ h/2 h/2
. tedudal = i (e 17y Su+ [ue 1709, 6w
a '+a, a
o i
h/2 h/2
+ [;_ltsc]_h/2 Gws + [utnc]_h/2 Gwn) da (F.12)
where, in view of (III1.12) and (III.13),
Gms = (1—es) Sx- XGes , (F.13)
Gwn = - ¥8x . (F.14)
Let us assume that
Gws = Oy s Gwn = 0 (F.15)
then equation (F.12) becomes
/ t s8u'da' = [ (B_ Su+p_ Ow+m &) da (F.16)
a “ta, ' " ~ a ° n
o i
where
~ h/2 ~ h/2 ~ h/2
pS = [utS]_h/?_ ’ Pn = futn]_h/z s m = [Uﬁts]_h/z

(F.17)

In the same manner the integral over the edge surface in (F.1l) can be

changed into an integral over the edge contour of the middle surface.

[ te8u da' = [ (N Su+@dw+H 8 de (F.18)
a (o4

e

where
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h/2

o= £h/2 (1+§—e) £, de

g, = ?2(1+iﬁt dz (F.19)
s T L R, ' “en

= ?/2 L+2)tzd
s Th/2 R8 s

For axisymmetrically deformed shells of revolution, under Kirchhoff's

hypothesis, the volume integral in (A.13) reduces to

ik ik a 11 22 11 22
£ (T76n, + 87 0ey,) dv = £ (778N, + 6N, + s 8y + s 8e,,) dv

(F.20)

11 22 11

Let Teg? TBG’ S.s? Spp be the physical components of T, T ~, s,
22 .

s™", and Negs Nggs Ess°  Fpp be the physical components of Ny1s Moo
ell and €)g- Then (F.20) becomes

ik ik _ .
\Ir T 6nik + s Geik) dv = {r (TSSGnSS + Teeﬁnee + sssﬁess + seeaeee) dv

(F.21)
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APPENDIX G: Some Matrices for the Axisymmetric Shells of Revolution

G.1. [B] Matrix for a Ring Element, see Equation (IV.29).

4x6
[- 1] 1
0 p - 0 n'p 2En'p
sin £ siny cosy £ cosy E2 cosy
r T T T T
) 12 ' [
0 -n'"® 0 n'e 2En ' d-p
. . . . . R 2
51n¢;1n¢ n'y + 531n¢;1n¢ cosw21n¢ ¥ 4 Ecos §1n¢ —28Y + £ cos%sin¢
T r r r T

3€2n'p

3 cosy
2 T

3£(&n"%-n)

—BEZW + €3cosgsin¢

where

1 2
—_— ’ u = —_— ’ ¢ = b

2(14n'%) 92 (14n12y3/2 )

y = siny+n'cosy
gr (1402372
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G.2. [B] Matrix for a Cap Element, see Equation (IV.29)

4%6
0 0 0 p(i#n'tans,) 2" 3€%n"0
2
0 0 0 1 Ecosy £ cosy
T cos Bl T T
0 0 0 o'tamd-n'?) 20" ¢-u 3£(En' 1)
0 0 0 n —tanBl v+ sin¢ Y + cosPsing -3EY + EcosPsind
£ E;QcosBl ;2 ;2 |
where
p _l___ u = _2_____ @ = "
2(l+n'2) 22(1+n.2)3/2 22(l+n'2)5/2
. 1
Y = siny+n'cosy . T o= xr
2,;(1+n'2)3/2 2

G.3. [$(E)] Matrix for a Ring Element, see Equation (IV.52)

3%6
1 £ 0 0 0 0
0 0 1 £ £2 g3
' 2
0 n 0 -1 —ZE —SE
2 2 2 2
i L(1M') 2(1') L' 2(')
G.4. ([¢(8)] Matrix for a Cap Element, see Equation (IV.52)
3%6
0 0 —cosy g 0 0
0 0 siny Etang, g2 g3
'—
n tanBl ~9F —352
0 0 0 ) > — 5
i 2(24n') 2(14n') 2(14n'")
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G.5. [G] Matrix for a Ring Element, see Equation (IV.48)

4%6
_ y ) -
0 n'p 0 -p -2Ep -387p
0 0 0 0 0 0
, 2
0 n'p 0 -p -2&p -387p
. 2
0 n'p 0 -p -2&p -3€ pJ

G.6. [G] Matrix for a Cap Element, see Equation (IV.48)

4%6
[0 o o pm-tams) 260 -36%]
0 0 0 0 0 0
2
0 0 0 p(n'—tanBl) -2&p -3E87p
2
0 0 0 p(n‘—tanBl) -2&p -3&7p
L . ]
G.7. [F] Matrix, see Equation (IV.36)
4x4
For Ring Element: 1 0 0 0
0 0 0 0
o
0 0 - = 0
o}
0 0 0 sind
B r |
For Cap Element: 1 0 0 0
0 0 0 0
@ N
0 0 - = 0
p
0 0 0 sing
Er
| -
where
1 nll
p =2 —— R [0} = —
2(14n'2) 22 (14n1%)>/2
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G.8. [A] Matrix for a Ring Element, see Equation (IV.57)
6%6
1 0 0] 0 0 0 ]
0 0 1 0 0 ’ 0
. 2
sinB, cosB —-cos B,
o —x F 45 —31 9 0
2 L
1 1 0 0 0 0
0 0 1 1 1 1
sinB.cosB. —200528, —coszB. —3c0326
0] __ng__l 0 7-1 __,Q,J— — 3
G.9. [A] Matrix for a Cap Element, see Equation (IV.57)
6x6 )
0 0 ~cosi 0 0 0
0 0 siny 0 0 0
0 0 0 0] 0 0
0 0 —cosy 1 0] 0
0 0 siny 1:anB:L 1 1
) .
0 0 0 = Bz(tansz_tansl) =2 COSZB =3 523
) 2 2 % €% Py
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G.10. [.2—:] Matrix for a Ring Element, see Equation (IV.59)
x
_l 0 0 0 0 0 |
-1 0 0 1 0 0
0] 1 0 0 0] 0
—tanBi 0 -2 (1+tan26i) tanBi (0] 0
2ta.n81+tan8j -3 2% (l+tan261) —(2tanBi+tanBj ) 3 2 (l+tan28j )-
| —(tanBi+tanBj) 2 -2 (l+tan28i) tanE»i+tanBj -2 - (1+tan28j)
G.11. [2_2] Matrix for a Cap Element, see Equation (IV.59)
x
[ 0 0 0 0 0 0 |
0] 0 0 0 0 0
0 1 0 0 0 0
0 cosy 0 1 0 0
0 co;él - ‘é‘:‘gz 0 -2tanB, -tan8, 3 2(1+tan282)
] 0 coiBl 22222 0 tanBl+tanB2 -2 —2,(1+tan282)_
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G.12. [T] Matrix, see Equation (IV.60)

I, | o0
o
[t = |~
6x6 0 i T,
| J
where
[ cosB., -~sinB.
1 R
[Ti] = sinBi cosBi
3x3
LO 0
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